
RADC-TR-89-205
Final Tecnical Report AD-A216 328October 1im

DISTRIBUTED SYSTEM
INSTRUMENTATION

Carnegie-Mellon University

ITT Research Institute

Z. Segall, D.F. Vrsalovlc, J. Kownacki, Byung-Hoon Suh

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC
ELECTE
JAN0 2 1990

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

%r 01 02 054

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-205 has been reviewed and is approved for publication.

APPROVED: L~
MARY L. DENZ
Project Engineer

APPROVED: J c . 5

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR TE COMMA DERR-. 4 "4CL

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COTD) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 07018e

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b.ECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING'ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-205

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Carnegie-Mellon University (if applicable) Rome Air Development Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)
Computer Science Department Griffiss AFB NY 13441-5700
Pittsburgh PA 15213

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F30602-87-D-0094

Rome Air Development Center COTD

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK C WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.

62702F 5581 QC 01
11. TITLE (Include Security Cassification)

DISTRIBUTED SYSTEM INSTRUMENTATION
12. PERSONAL AUTHOR(S)
Z. Segall, D.F. Vrsalovic, J. Kownacki, Byung-Hoon Suh

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year Month,Day) 15. PAGE COUNT
Final FROM Jan 88 TO Oct 88 October 1989 144

16. SUPPLEMENTARY NOTATION''

This contract is with IIT Research Institute (IITRI). Work was performed by Carnegie-Mellon
University under subcontract with IITRI.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP IPerformance
11 V/ Instrumentat ion

Distributed Systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The first part of this report provides the rationale and justification for the design

features of PARADISE - PARAllel and Distributed Instrumentation System Environment. The
second part describes, in a bottom-up manner, the PARADISE design, and a set of feasibility
studies culminating with a sample execution program. PARADISE is a distributed

instrumentation system working on DISE under CRONUS and uses a variety of tools and an

Integration Platform.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 AISTSACTFERITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Mary L. Denz (315) 330-3623 RADC (COTD)

00 Form 1473, JUN 86 Previous editions are obsoete. -_ SECURJTY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

S-i

Executive Summary

This document is the Task 0002 Final Technical Report, entitled "Distributed System

Instrumentation," under RADC contract F30602-87-D-0094. The report is organized into two parts.

The first part provides the rationale and justification for the design features of PARADISE --

PARAllel and Distributed Instrumentation System Environment. The second part describes, in a

bottom-up manner, the PARADISE design, and a set of feasibility studies culminating with a sample

execution program. PARADISE is a distributed instrumentation system working on DISE under

CRONUS and uses a variety of tools and an Integration Platform. In choosing the design approach,

special attention has been paid to fulfill the design requirements described in RADC PR. No. B-8-3501,

using proved in-practice techniques.

To this end, a number of instrumentation systems have been evaluated. The systems evaluated

include: IDT (Honeywell), PIE (CMU), FIAT (CMU) and Para-Sights (Encore). In many ways,

PARADISE incorporates the most valuable technology from all of these systems.

PARADISE's main conceptual idea is the relational model, a well known and proven model used

in many applications, including databases. Applying this model to an instrumentation system is

conducive to high programmability and flexibility, as exemplified by the PIE system. Using a well

known query language, the User can ask high level questions about, say, the performance of his

program. Then the system will determine the necessary sensors to be enabled/disabled and present

the user with a suitable high level response to the query.

Another conceptual idea of the PARADISE design is the incorporation of a set of tools, enabling

automated instrumentation, automated experimentation and automated fault injection. The

intellectual value resides in their capability of capturing information from the program and/or uer

and being able to use it for automating the process they are supporting.

Finally, a set of mechanisms for instrumentation and fault injection are described in detail.

These provide a highly efficient way to observe and fault inject. Most of these mechanisms have been 0
chosen after a careful feasibility study, and have been proven to be suitable (in te: ins of performance,

intrusiveness and functionality) for CRONUS and the DISE heterogeneous distributed environment.

i Av.labi1liy CodAs_
Aval eftt r

~:Dist

Part I
Rationale and Justifications for the Design

I-i

Table of Contents Part I-
1. Paradise Design Justification 1

1.1. Paradise Rationale 1
1.2. Paradise Organization 2

1.2.1. Monitoring Mechanism and Policies 2
121.1. Policies 2
1.2.1.2. Integration 3
1.2.1.3. Presentation 3
1.2.1.4. Paradise Instrumentation Mechanism Considerations 3

1.3. Stimulus Mechanism 5
1.3.0.1. Environment Control 6
1.3.0.2. Time Management 6

1.3.1. Automated Tools 6
1.4. Librarians and the Experiment Support Tool 7
1.5. Other Instrumentation Systems 7

1.5.1. IDT 7
1.5.1.1. IDT Instrumentation 8
1.5.1.2. The Event - Action Model 8
1.5.1.3. Experimentation in IDT 9
1.5.1.4. Data Presentation in IIT 9

1.5.2. PIE 10
1.5.2.1. PERMOD - Performance Evaluation Model 11
1.5.2.2. MPC - Multiprocessor C 11
1.5.2.3. PIEMAN 12
1.5.2.4. PIEMACS 12
1.5.2.5. PIESCOPE 13
1.5.2.6. PEMON 13

1.5.3. FIAT 14
1.5.3.1. Fault Injection 14
1.5.32. The FIAT Process and Its Abstractions 16
1.5.3.3. Workload (WL) 16
1.5.3.4. Fault Classes and Fault Lists 17
1.5.3.5. Data Collection/Analysis 17

1.5.4. Para-Sights 17
1.5.4.1. Para-Sights Commands 18
1.5.41 Interface to Scan Points and Parasites 18
1.5.4.3. Restrictions of Para-Sights 19
1.5.4.4. Some Standard Parasites 19

1.6. Contrasting the Paradise Design with Other Instrumentation Systems 19
1.6.1. Intrusiveness 20
1.6.2. Program Replay in Paradise 21
1.6.3. Programmability and Flexibility 21
1.6.4. Integration with the Honeywell Integration Platform 22

List of Tables
Table 1-1: Comparison of Functionality/Model Dimensions 22
Table 1-2: Comparison of Properties/User Support Dimensions 23

I-1

1. Paradise Design Justification
This section contains a description of the considerations and justifications involved in the Paradise

design.

1.1. Paradise Rationale
In the most general sense, instrumentation is the support for the behavioral and functional

observability of a computer system throughout its complete life cycle.

RADC is currently developing and supporting a distributed system test bed, DISE, along with its
user level operating system, CRONUS, and an integration platform (IP) for a set of tools. This test

bed and its associated tools will be used to develop and evaluate a set of distributed algorithms and

applications requiring such features as:
" locally and geographically distributed computing

* parallel computing

" real-time computing

" fault-tolerant and highly dependable computing

" security

" heterogeneous computing

" property validation (predeployment and post-deployment)

In this context instrumentation is perceived as a critical component of the test bed, being geared
toward supporting the evaluation and property validation of the above RADC algorithms and

application features.

One would successfully argue that the quality of a test bed is directly proportional with the quality

of its instrumentation. There are a set of general requirements for such an instrumentation system

such as non-intrusiveness, programmability, flexibility, etc. However, all of these requirements have
to be judged in the light of their suitability to perform a certain relevant task. Hence, our view of
instrumentation for DISE/CRONUS is to suit those requirements to the task at hand. For example,

if one needs ton measure an object operation with an execution time in the hundreds of milliseconds
range, there i.. little need for zero intrusiveness instrumentation (nearly impossible to achieve). In

this cas.-, software implemented instrumentation having a controlled intrusiveness in the range of
fractions of a millisecond will be sufficient.

As such, we have identified the performance and dependability evaluation as targets for the

design of the Paradise system. Aside from the fact that these two areas of application are central to
the DISE/CRONUS test beds, we perceived the need to design a system with realistic expectations

and cost.

1-2

1.2. Paradise Organization
Paradise system provides support for performance and dependability properties evaluation. As

such, it supports the concept of observability through instrumentation for performance evaluation

[Gregoretti 86]and of fault-injection for dependability evaluation [Segall 88a], [Segall 88b].

In general, an instrumentation system has three components:

" mechanisms "how" to observe and/or fault inject

" expertise "where" and "when" to observe and "where," when and "with
what" to fault inject

" automated tools applying in an automated way the expertise to the mechanisms.

Mechanisms could be further classified into:
" Monitoring mechanisms and policies

" Stimulus mechanisms

" Environment control

" Time management

1.2.1. Monitoring Mechanism and Policies
The monitoring mechanism assumes the existence of a sensor object which provides the following

functionalities:
* Detection manifests the occurrence of a given event. Detection may be passive or

active. In the former case the event itself triggers the sensor mechanism, in the latter
the sensor actively samples the system, looking for the occurrence of an event.

*Isolation and filtering determines if the event which has taken place has some
significance for the current monitoring policy and should be reported or discarded. Its
purpose is to reduce the amount of information derived from sensors; its simplest form is
the enable/disable (E/D) mechanism. A disabled sensor is transparent to the system in
the sense that no information is collected. The enable mechanism may be static if the
ElD information is contained in the sensor itself and may be modified only by
reprogramming it. In a dynamic ED mechanism, the E/D information is external to the
sensor and accessible both to it and to an external agent which could change it without
reprogramming the sensor.

Notification transfers the occurrence of the event, possibly associated with r timestamp
and with other information relevant to the event, to an external environment.

1.2.1.1. Policies
The policy mechanisms deal with the instrumention of each relevant level of the distributed

system using the underlying monitoring mechanism.

The levels of observability of a distributed program execution may widely range from microcode

instruction execution to the overall distributed program behavior. For each level, one may define a

set of objects which are meaningful to that level and a set of events related to those objects.

Examples of such multilevel policies are:
* Hardware Policy (HP). The objects defined to be visible for instrumentation are those

1-3

directly related to the distributed computational process, namely Processors, Memory
Units and CommunicationIchannels. Examples of events observable at this level are the
Cache Hit/Miss ration of a processor, the utilization factor of a memory unit and
contention for communication over a common bus. Sensors at this level are not user or
application dependent and the policy will be that of a profiler with a rigid and predefined
set of observable events.

" UNIX Kernel Policy (KP). By the term 'kernel" we encompass here the UNIX
Operating System functions, including typical kernel mechanisms such as context
switching and interrupt handling, as well as policies such %s scheduling, memory
management,and 1/0 handling. Examples of visible objects at this level are Processes,
Memory Pages, Messages and Ports, 1/0 Routines and data structures. The KP has a
structure similar to that of a profiler. Monitoring functions are predefined and rigidly
assigned to sensors embedded in the kernel. Nevertheless, sensors at this level are
provided with a limited form of filtering capability in order to be able to focus on a
restricted part of the computational status and reduce the amount of data produced.

" CRONUS Run-Time Support Policy (SP). At this level, observable objects are
instantiations of User level Operating System defined entities. Here, typical significant
events are the invocation or the termination of an entity. Such a policy has the structure
of a profiler with a more sophisticated filtering mechanism.

* Application Monitoring Policy (AP). This is an application level monitor. Sensors
placement as well as object and event semantics are User language and application
dependent.

1.2.1.2. Integration
The integration among policies has to be organized in such a way that manipulation and retrieval

is straightforward and may be tailored by the User or the system to filter only the information

required for a specific application.

1.2.1.3. Presentation
The last mechanism element is related to information presentation. This may take a substantially

different forms depending upon whether the information is targeted for a human user or for other
programs. In the first case, the presentation of the information may take into account various

human and application user interface requirements. In the second case, the information format will

have to follow the standard software engineering practices for interfacing distributed programs.

1.2.1.4. Paradise Instrumenta .on Mechanism Considerations
Monitoring mechanisms in Partdh a have the following features:

" Detection - Done by meF.is of software sensors [See Part II, Section 2.3.1]. The reason
for choosing software sensors is related to the requirement for portability between
heterogeneous hosts. Hardware or hybrid sensors are less intrusive, however, they are
not portable and are somewhat harder to manage and interpret.

" Isolation and filtering are done in three ways [See Part II, Section 2.3.2 and 2.3.3):
" software enable/disable on a dynamic basis, system wide

" count/non-count events

" composite events on a dynamic basis through the mechanism of subordination,
local to each object.

1-4

The reason for choosing the above features of isolation and filtering is to minimize the
amount of information required to travel through the system and, hence, minimize
intrusiveness. By the same token, the concept of subordination provides a mechanism to
support the programmability requirement through the relational model at the
monitoring mechanism level.

*Notification is done through an attachment [See Part II, Section 2.3.4] local to each
object. The attachment concept is found to be a suitable way for the flexible and
transparent integration of instrumentation with the CRONUS object model. Note that
the same concept will work with non-object oriented systems, thus providing portability.
To further enhance the filtering capability, an enable/disable notification mechanism for
sensor is provided network wide.

There are a number of policies, hence the policy in Paradise is multilevel in nature. It is based on

the relational model, which provides at each level the capability to define a set of objects and the

relations between them. The choice of the relational model provides for substantial programmability

in a well structured system ,,Ject and relations) [Segall 831 as well as the availability of well known

and understood query languages to Lupport this feature. Alternatives to this design decision are

various ad-hoc policies and the Honeywell event-action model [Bhatt 87) . Ad-hoc policies are not

conducive to programmability, flexibility and the integration between policy levels. The Honeywell

event-action model would fit the Paradise requirements quite nicely. However, due to the fact that

the event-action model requires the user to deal with an additional unfamiliar language and that

little practical experience is available for this model, we decided in favor of the relational model

which does not have the above handicaps.

The proposed initial policies for Paradise are:
" UNIX policy with the following objects:

• Nodes

" Processes

* Communication object

" Scheduler

" 1/0 devices

" CRONUS policy with the following objects:
" Cronus kernel

* System managers

" Object managers

• Cronus communication

" Application policy with the following components:
" CRONUS speciic

" Objects

" Clients

" Operations

" Language specific:

i-5

" Syntax

" Semantic (some)

Application specific
" Data structures

* Application constructs

Common to all of these policies are the relations of time and usage. Obviously, other relations

(simple or derived) could be programmed using the relational model. Example of such relations

include tracing and sampling.

The integration and presentation mechanisms in Paradise are also based on the relational model.

Aside from the above argument in favor of the relational model, the implementation of this paradigm

assumes the existence of a system wide repository for objects and relations. This repository fits

nicely into the Integration Platform proposed by Honeywell. Through the Integration Platform, the

objects and the relations become accessible to both programs and the User. Should the Integration

Platform be an object oriented database, this would provide a positive step toward optimizing the

types of accesses the Paradise policy mechanisms would most likely perform.

1.3. Stimulus Mechanism
A stimulus mechanism is correlated to the particular system property to be validated. In the case

of dependability evaluation, the stimulus mechanism is fault injection. Fault injection is a controlled

corruption of one or more components of the distributed system. For a complete description of the

fault-injection validation process, see [Segall 88a], [Segall 88b].

From the perspective of the instrumentation system, fault injection can be considered as an

application of instrumentation and, hence, external to the scope of the instrumentation system.

However, for efficiency reasons, fault injection needs to be integrated with the instrumentation

system. The description of the integrated fault injection mechanism follows.

The Paradise fault injection mechanism should answer the following questions:

" "how" to fault inject - use fault injection attachments ' corrupt memory contents [See
Part II, Section 2.4].

* "when" to fault inject -- synchronized by the Paradi- - sensors [See Part II, Section 2.2.2
and 2.3.2].

* "where" and "with what" -- expertise is captured by the automated tools [See Part II,
Sections 4.1.4, 4.2.4, and 5.1.21.

The Paradise fault injection policies follow the structure of the instrumentation mechanism

policies providing a multilevel relational model based on the set of policies at the UNIX level,

CRONUS level and Application level. The filtering policies provide for both transient fault and

permanent fault features. Furthermore, the integration and presentation mechanism are identical

to the instrumentation mechanisms. The fault injection mechanism design is based on experience

1-6

gained with the FIAT system, but is far from being identical. The main difference is related to the

adaptation of the relational model for monitoring, integration and presentation, as well as a

substantial integration with the instrumentation systems.

1.3.0.1. Environment Control
In order to compare and understand two or more executions of an instrumented workload, one has

to know about the exact conditions in which the test bed has been used. Furthermore, in preparing

the experiments, specific commands have to be available to determine the environment

configuration. Accordingly, Paradise provides control of the following.
" Workload control [See Part II, Sections 3.1 and 4.1.11

" Multilevel instrumentation control [See Part II, Sections 3.2 and 4.1.2]

" Fault injection control [See Part II, Sections 3.3 and 4.1.3]

" Data collection [See Part II, Sections 3.4 and 4.1.4]

1.3.0.2. Time Management
The last set of mechanisms in Paradise deals with time. For instrumentation purposes only, it is

assumed that time is available in a consistent way, network wide, and its accuracy is under 1

millisecond. Although we do not provide an explicit design for such a time facility, we suggest that

the above goel could be achieved through the addition of a radio receiver to each DISE station to

access a world wide clock (used in astronomical observation, etc.). This approach has been already

used a number of times with no apparent problems. Alternatively, a software implementation using

Lamport's clocks could provide the same functionality with some added intrusiveness.

1.3.1. Automated Tools
The set of automated tools available in Paradise have two main characteristics:

1. Support the relational model exported by the mechanisms.

2. Encapsulate instrumentation and fault injection expertise in an automated way.

There are two such tools in Paradise [See Part II, Section 5]:

PPROC responsible for syntax/semantic information extraction and implantation of
sensors.

POPROC does the required attribute extraction for fault injection.

The tools extract development time views, such as the syntactic/semantic view of a language

program, and then automatically instrument the program for either performance evaluation or

dependability evaluation.

The policy definition step could be handled for each level through the use of these tools.

Integration and presentation in Paradise is handled through the relational model and an

automated tool which supports it through a graphical multiwindow interface. The tool,

PARASCOPE, is somewhat identical to PIESCOPE [See Part II, Section 5.4] in functionality and

1-7

design. PIESCOPE and its associated technology has been proven to be quite successful in practice.

To our knowledge, PIESCOPE is unique and we do not know of any such tool with similar

capabilities. Further discussion on PIESCOPE could be found in [Segall 85], [Gregoretti 86], [Segall

88c].

1.4. Librarians and the Experiment Support Tool
There are two Librarians in Paradise:

" Workload Librarian [See Part I, Section 5.1.1]

" Fault Injection Librarian [See Part II, Section 5.1.2]

Each librarian has particular expertise in the definition, managing and archiving, respectively,

program modules and fault classes. Although these tools are not usually found in an

instrumentation environment, they are required to support the automated experimentation process

in the context of the Honeywell Integrated Platform.

For the same reasons, an Experiment Definition and an added support tool is proposed. Not an

instrumentation tool proper, it automates the definition and execution of experiments. Given that

the librarians and the experiment definition tools are somewhat optional in an instrumentation

environment, but are necessary in an experimentation environment, we suggest that such tools be

included in the overall design.

1.5. Other Instrumentation Systems
There have been several other experimental instrumentation systems developed inside and

outside CMU. In order place the Paradise design in perspective, we will first give short descriptions

for the better known experimental instrumentation systems:
" IDT developed by Honeywell [Bhatt 87]

" PIE developed at CMU [Segall 88c]

" FIAT developed at CMU [Segall 88a]

" Para-Sights developed at Encore Corp [Aral 881.

1.5.1. JDT
Honeywell developed the DSW (Distributed Systems Workbench) in order to facilitate software

development of distributed applications in ADA. DSW is composed of several parts:
" Development tools for distributed applications in ADA.

" An environment to assist in performance and other types of assessments.

* An environment to control experimentation.

" Run time support to accelerate experimentation.

The IDT (Instrumented Distributed Testbed) represents one possible hardware base for the

I-8

Honeywell's DSW. It supports the "Event-action" model. The IDT consists of two components:* A high performance communications network with a set of computer nodes. These nodes

are running the distributed application under study.

" A reconfigurable instrumentation system which collects data from test runs of the
application under study.

The IDT nodes are processors capable of running substantial applications written in ADA. Each

node consists of a commercial 32 bit microprocessor with memory and dedicated peripherals

including a hard disk and CRT. These nodes are interconnected by a network of 10MHz busses. The

interconnection structure is reconfigurable on demand, so various types of networks can be

emulated.

1.5.1.1. IDT Instrumentation
The IDT instrumentation functions allow experiment monitoring and controlling. The User can

specify the observability of an element as well as the methods for data collection and presentation.

This instrumentation system uses dedicated hardware in order to lower the intrusiveness of
instrumentation into the application under test. The dedicated IDT instrumentation resources

consist of a dedicated instrumentation processor, memory and specialized hardware for event

detection and signalling.

1.5.1.2. The Event -Action Model
The IDT instrumentation functions according to the "Event - Action" model.

From the IDT perspective, events are occurrences that are detectable by instrumentation. For

example:
" A packet is sent

" A packet is received

" A communication error occurs

* A statement is executed

-A value is out of limits, etc.

Suc1l avents are made visible via special event detection mechanisms. An event which is signalled

b, .uch a mechanism is considered to be a simple event. Multiple simple events which have a

specific relation can form a composite event. The IDT supports a mapping-table facility which

relates events to the actions to be taken upon their occurrence.

The instrumentation actions can be any type of operation(s) which are to be performed upon the

detection of a simple or a composite event. Some typical practical examples of instrumentation

actions are:
" Counting of different types of events

" Timestamping

1-9

" Various relational operations on events

• Various arithmetic operations on events

" Statistical event data processing

* General alteration of the control flow of an experiment in order to provide for the
adaptive behavior of the application under test.

* Graphic or alphanumeric displays of the experiment data.

The IDT mapping table provides a many-to-many mapping between events and actions. In

addition, the creation of a composite event can be also considered as an action.

1.5.1.3. Experimentation in IDT
The process of experimentation in IDT consists of six distinct phases:

" Experiment definition

" Testbed preparation

" Experiment specification

* Experiment establishment

" Experiment execution

" Post experiment data analysis.

In order to facilitate experimentation in all the phases mentioned, IDT provides the

Experimentation Specification Language (ESL). ESL comes with a library of predefined functions

that can be used as "actions" during experimentation. The ESL is a high level language. An

experiment description in ESL is translated by the ESL translator into event-to-action maps. These

maps are loaded into the system during the experiment establishment phase.

The ESL also supports statistical and behavioral performance measurements.

1.5.1.4. Data Presentation in IDT
In addition to the customized actions that can be specified by the User using ESL and the "Event -

Action" model, IDT provides a set of prepackaged display functions such as:

" Histogram displays in bar or pie chart form

" On-line time plots

" Scrolling textual displays

" Tabular displays

In addition to data presentation, standard functions to store the experiment data are also

provided.

I-10

1.5.2. PIE
The PIE project (Performance Efficient Parallel/Distributed Programming and Instrumentation

Environment) supports the complete design process from modeling (i.g. prevention), to monitoring

(e.g. bottleneck detection), to run-time (e.g. avoidance).

PIE [Segall 85] views parallel processing in the context of "implementation machine" (IM) models.

IMs are User templates which provide low level process synchronization and communication details

for the programmer. The User can thus concentrate on algorithm design and implementation to a

greater degree than previously possible.

The PIE system's approach tends to eliminate performance degradations due to classical

structured approaches by introducing "virtual" rather than "ph ,sical" layers. The virtual structure

is available during program development time when such abstractions are required to assist in

understanding complexity. By run-time, however, the structure has been flattened and removed

yielding higher performance parallel programs.

PIE also embraces the concept of "programming for observability" [Gregoretti 86] in which Users

make use of visual tools to aid in the development, testing, and, debugging of the application.

During development, the PIE system incrementally builds a view of the User program's semantic

structure. During testing and debugging, the PIE system allows the User to view the execution of

the program (in either an on-line or post-mortem fashion). It is the contention that the extra

information gained from the visual displays will assist the User to think more clearly and more in

depth about the program's behavior.

The present PIE environment consists of several components:
" PERMOD [Vrsalovic 84] is a modeling tool which provides performance prediction in the

early design stages of parallel systems.

" MPC (Multiprocessor C) [Vrsalovic 88] is a C preprocessor that converts special MP
(Multi-Processor) language constructs into C program syntax. It implements the
"Consistent Abstract Shared Data Type Implementation Machine" (CASDTIM) model.
Despite the fact that the target machines can be of different architectures, MPC provides
the CASDTIM model te the User via synchronization, and shared memory constructs.

" PIEman implements a relati-- al model for each PIE IM. All PIE tools share data via
the relational model.

" PlEmacs is a Gnu-i1iacs based editor which extracts development time data about the
target program and assists in instrumenting it for the purpose of run-time monitoring.

" PlEscope allows all development and run-time data to be presented to the PIE User in
graphical form.

" PlEmon supports the collection and storage of run-time events via the use of sensors.

The following sections discuss only the MPC and PERMOD portions of PIE. However examples

given throughout the paper are illustrated by the graphical outputs from PIEscope.

1.5.2.1. PERMOD - Performance Evaluation Model
PERMOD, a model for predicting the performance of algorithms composed of repeated iterations,

called application cycles, on multiprocessors is derived in [Vrsalovic 84].

The applicable parallel systems consist of a number of processors (N), each having its own local

memory. All the processors are connected to a set of global resources via an interconnection

structure. Each processor has a variable speed defined as the speed of a referent processor (whose
relative speed is 1) multiplied by some factor p. The speed of the global resources is defined in the

same way by a factor q. The interconnection structure allows for the access of any processor to any
global resource in FIFO order with a throughput of r. Notice that r is not exclusively a hardware

parameter due to the fact that an application itself has to be able to take advantage of the multiple
global access possibility. In order to clarify this statement let us assume for the moment that the

interconnection structure is built from r parallel buses connecting processors to a set of interleaved
memory modules. In such a case there will be r parallel global accesses at a time if and only if the

application can distribute the data among these modules in such a way that there is no conflict

during the access. It will be shown latter that PERMOD also gives acceptable results (Vrsalovic

84] for systems where local memories are replaced by caches so long as the hit ratio is high and the

portion of code misses are factored into the data access global time.

1.5.2.2. MPC - Multiprocessor C
Section 1.5.2 introduced the concept of the implementation machine, or IM. Unlike the typical

virtual machine approach which relies on very generalized, high level interfaces which are reflected

in the run-time structure of the code, the implementation machine approach translates the User code

into target machine code using only low level calls to the run-time system.

MPC is a special preprocessor which translates MP syntax into a C program. It consists of three

distinct parts: an analyzer, a constructor, and a target code generator.

The analyzer takes an MPC program as input, which the constructor then converts to a C
program. Although the resulting C program may differ from machine to machine, the original MPC

program need not be changed. The analyzer also assists in instrumentation of the MPC program so

tha+ run-time performance data can be collected. In the present implementation, the target code

generator is the C compiler. In the linking stage of the C compiler the User should use the MPC

runtime support library.

The MPC language is modeled directly on C, thus allowing parallel processing application

programmers to use a language with which they are already familiar. All standard C commands and

constructs are recognized by MPC. Identifiers, however, cannot begin with mp_ or MP., since the

constructor uses these as prefixes for internal identifiers. Consequently, virtually any program

(noting the above mentioned exception) that compiles under C, will also compile under MPC.

The current version of MPC supports the Consistent Abstract Shared Data Type Implementation

1-12

Machine or CASDTIM model. Implementation machines differ in the manner in which

synchronization and communication are handled. MPC exports CASDTIM to Users via several new

constructs that allow for efficient parallel algorithm design, including:
1. ACTIVITIES: Sequential units of computation that are spawned and executed in

parallel with the creating function.

2. JOIN AND DETACH STATEMENTS: ommands that allow activity management.

3. FRAMES: An encapsulation of global data and operations on that data. Frames are
shared among specified activities and/or C functions and thus represent shared
abstract data types.

4. SYNC AND DSYNC STATEMENTS: Meta constructs that provide for:
synchronization of parallel activities and mutual exclusion for specific parts of data in
frames.

5. TEAMS: Groups of activities and frames composing a unique subsystem with an
associated communication and synchronization structure.

6. SENSORS: Locations for collecting information on parallel program execution during
run time.

1.5.2.3. PIEMAN
Central to the original PIE thesis is a shared, relational database of information concerning the

applications and experiments using those applications. Additionally, the database manager must

notify the other components of the system when some shared object is updated so as to maintain

system-wide consistency. The current version of the database manager (called PIEman) is

implemented on top of the INFORMIXR relational database package. Communication is via IPC as

implemented in MACH [Rashid 87].

1.5.2.4. PIEMACS
This paragraph describes PlEmacs, the current implementation of the MPOE originally

envisioned in the PIE proposal. The MPOE was specified to be an editorlwith special knowledge of

the User programming language. The MPOE uses this special knowledge to create an image in the

PIE database (See Section 1.5.2.3) of the interesting constructs in the User's program. The MPOE

also maintains a mapping from the objects in the image to their positions in the User's code. This
map function enables the User to navigate through his L, -lication using PlEscope.

The original specification of the MPOE called for r . editor that could work with a multitude of

languages. The current implementation, however, is just a prototype so the decision was made to
I

support only one language: MPC. The methods used for handling MPC turn out to be well suited for

just about any statement-based 2 language.3

1The current version of PlEmacs is written on top of the GNU Emacs editor.

2H-eretofore, languaes, when used in the generic sense, refers to statement based languages

3 LISP mode has also been Investigated for PlEmacs but it requires a slightly different approach.

1-13

1.5.2.5. PIESCOPE
PlEscope provides a graphical views of the development and execution of a User's MPC program.

PlEscope uses the X-Windows, Version 10, windowing system. X-Windows was chosen as it is

becoming the de facto window manager in university environments, and at CMU-CSD in particular.
The PlEscope receives program updates via messages from the relational database manager,

PIEman. Another way to look at PlEscope is as graphical server: any application can be written to
take the place of PIEman and can use PlEscope's views without strictly being part of PIE.

Currently, PlEscope understands general classes of program constructs, so any programming

language which supports these classes can be handled (See Section 1.5.2.4 for details of these

classes).

PlEscope provides three development-time views and three execution-time views. The

development views are:

roadmap
a tree-like display of the definition structure of the User's program.

use roadmap
a tree-like display of the instantiation and static invocation structure of the
User's program

sensmap
similar to the roadmap but also includes the User's explicitly-placed sensors.
The User uses the sensmap view to enable or disable the sensor firings during the
program execution.

The execution-time views are:

barscope
a bar graph of the execution of the User's program.

animation tree (NY/)
a tree-like display which replays the dynamic invocations (and destruction) of
the structures in the User's program.

max-animation tree (NY/)
similar to the animation tree except that the destructions are not shown, so the
User can see the maximum amount of resources used by the program.

Each vie%, ',-s many features for zooming in and filtering the viewed data which are not described

here.

1.5.2.6. PIEMON
The PIE performance monitor is a facility for observing computations. It is multi-level, consisting

of User, run-time and kernel levels.

A monitor observes and records events. An event is an observable, time-stamped object occurring

during the execution of a computation; it is the basic unit of information for observability. Events

consist of two basic types, control-driven and data-driven.

e A control-driven event is more than just an obfuscating name for a state of a state
machine because it not only designates a specific logical point (state) in a computation's

1-14

control flow, but includes the time when that state was reached and, occasionally,
ancillary computation data requested by a User. Examples of control-driven events are
the inception and termination of processes or the start of an iteration of a program loop.

A data-driven event is a time stamped modification of, or demand for, computation data.
Data-driven events do not contain direct information about computation states, but
enmasse they describe data access patterns. Although inferences can be made about
what computation states are possible for a specific data-driven event, they can be made
only after comparing the event to where the datum is used in the computation's text and
with an analysis of the execution history provided by control-driven events.

Sensors detect the events of a computation and prepare them for retrieval by collection

instrumentation. This instrumentation is a software/hardware system which appends an event to

the event record of the computation. After an execution terminates, PIEman selects and filters the

events in the event record using a relational data base and any relevant performance or status goals

requested by the User. The relational data base, constructed at development time, contains the

static structures of a program as well the semantic and temporal relations between them. The

structures contain sensor marks so that events collected during execution can be mapped onto their

corresponding computation

Events are observed by a monitoring environment which extracts development and run-time

information about sequential and parallel structures of a computation, and about its execution. The

assemblage of mechanisms and protocols that make up this monitoring environment is called the

monitor. As discussed earlier, our definition of "monitor" is distinguished from three other common

uses of the term by the observational sense which is ascribed to it. Other meanings include (I)

synonymy with "operating system," (2) the User interface for an operating system, and (3) a data

object responsible for synchronizing and controlling multiple accesses to critical sections of code.

Each of these familiar uses ascribes notions of resource management and control to the term
"monitor." The monitoring mechanisms consist of sensors for marking events, instrumentation for

event collection and a relational model that ties together the development and execution time data of

a computation.

1.5.3. FIAT
FIAT stands for Fault Injection-based Automated Testing environment. Sin. each of these

keywords represents part of the goals and concepts of the system, we wil' -rst examine each

keyword and its significance.

1.5.3.1. Fault Injection

In reality, in FIAT, we are able to inject both the fault itself as well as its manifestation in terms

of, say, triggering the error detection recovery mechanisms (EDRM). This is accomplished through

the use of software fault injection mechanisms. The concept of fault injection is not new.

Organizations committed to the development of highly dependable hardware have, for many years,

been using hardware fault injection to evaluate the relative effectiveness of alternative hardware

error detection designs.

1-15

As hardware error detection mrechanisms have been enhanced by this process, solid state circuit

design and manufacturing technologies have also been steadily improved, decreasing the rate at
which errors due to hardware faults are generated. The combined effect has been to significantly

lower the rates at which errors due to hardware faults are generated in systems, and to greatly

improve the probability that hardware-caused errors will be detected and compensated for when

they do occur.

Unfortunately, comparable progress has not yet been made in understanding, and compensating

for, errors caused by primary software faults (software "bugs") and by secondary faults in software

caused by undetected hardware errors.

Accordingly, the FIAT environment has been designed for the injection of error patterns into

executing software that are representative of errors that are likely to be generated by software and

hardware.

The function of this fault injection testing process will be to uncover deficiencies in a system's

error detection and recovery mechanism (EDRMs), and to guide tradeoffs between alternative design

enhancements, by providing quantitative evaluations of their relative effectiveness.

The FIAT environment provides experimenters with facilities for defining fault classes

(relationships between faults, and the error patterns that they cause); for specifying (e.g., relative to

the source code of an application) where, when, and for how long errors will strike; and how they will

interact with executing object code or data.

The FIAT environment then automatically locates the designated object code or data from its

source code designation, and takes action against it.

In its initial version, FIAT software can fault inject User application code and data, and can inject

faults into messages (corrupted, lost, delayed), tasks (delayed, abncrmal termination), and timers.

Subsequent versions will extend these fault injection capabilities into operating systems, and will

enable hardware fault injection under FIAT control.

The keyword testing refers to botn testing of er'or detection/recovery mechanism as well as

quantitative evaluation of the d.pendability property of the system under test. As mentioned before,

the test set for EDRM happened to be a set of fault/errors. This is the set that has to be injected in

order to make sure that the EDRM are working properly.

Automated refers to the critical issue of the complexity of the fault injection process. As in testing,

the quality of the results will be a function of the capability of the system to inject (test) as many

faults as possible per unit of time. This, in fact, means automated support at development time, as

well as at run time, for the fault injection process.

The keyword environment refers to the high degree of integration of the FIAT system. The

1-16

components of the system, workloads, fault classes, experiments and data analysis (further detailed

below), are integrated under one comprehensive User interface supporting the process of

preparation, debugging, run time control and data analysis.

To summarize, the goals of the FIAT project are:
" Development of an environment for automated software fault/error injection and error

detection/recovery (coverage) analysis.

* Fault-free characterization of the system under investigation (performance and profiling
and EDRM testing).

" Relative contrasting of two or more fault-tolerant technique (with a substantial software
component) dependability properties.

1.5.3.2. The FIAT Process and Its Abstractions
To achieve the above goals, the following experimental phases are to be applied to the system

under test.
" Fault free validation of system: Profile system software components' performance

characteristics and collect data.

" Fault free validation of workload: Profile the performance/functionality characteristics
of the workload and collect data.

" Fault injection experimentation: Inject faults into profiled workload and collect histories
and error records.

To support the fault injection process, the following abstractions are provided:
* Workload

" Fault class

" Experiment

" Data collection/analysis

We now describe each of the above abstractions, as well as the automated tools for manipulating

them.

1.5.3.3. Workload (WL)
Users write distributed real-time dependable programs. The FIAT system manipulates

workloads. A workload is an observable set of real-time communicating tasks. A task is an

observable (monitorable) scheduled unit of computation communicating through observable

communication media named channels.

In order to fault inject a workload at the symbolic level, a number of attributes have to be

extracted from the workload. The term attributes refers to the set of symbolic names identifying the

tasks in the workload as well as the code and data segments within each task. This analysis is

automatically done by a tool known as the attribute extractor. The attribute extractor, after

analyzing the workload, provides tables (e.g., task tables) known as domains. These domains are

further used in the process, discussed below, of automatically generating fault lists.

1-17

Another aspect of fault injection is how to fault inject a task without breaking the operating

system protection mechanism. We solve this issue by linking (at link time) with a number of

program attachments which serve as a Trojan horse to fault inject from inside the task on external

request.

1.5.3.4. Fault Classes and Fault Lists
A fault class is a template describing a set of workload or system modifications, which are

representative of a group of physical/logical faults having common properties. This template is

similar to an abstract data type. As in any abstract type, the fault class can be instantiated,

meaning that each method is applied to the associated domain and a specific fault (fault instance) is

generated.

1.5.3.5. Data Collection/Analysis
Data collection (DC) supports two entities: histories and error reports. Histories are records of

monitored normal functional and performance events. Error reports are records of exceptions and

abnormal events. Data analysis recognizes three hierarchical levels of experiment data processing:.
run, experiment and multiple experiments. A run is a single fault injection in a specific workload.

An experiment is a collection of runs, usually for the same fault class. Multi-experiment analysis

refers to the ability to cross section a number of experiments under a specific number of dimensions.

In FIAT two types of data analysis are available: the canned variety and the open variety. The

canned data analysis provides a set of predefined functions such as workload profiling and error

coverage statistics. The open data analysis is a relational data base query language which enables

the Users to define their own analysis goals.

1.5.4. Para-Sights
Para-Sights [Aral 88] is an environment for debugging and profiling of parallel programs. The

User can control execution and examine values of program variables by using this environment.

Monitoring in Para-Sights is minimally intrusive if a target machine has sufficient parallel resources

to spare for monitoring. Some of the main features of Parp.-Sights are:
* Para-Sight runs as a separate thread of execution in :1he same address space as the

target program.

" Due to address space sharing, Para-Sights can r'aost nonintrusivelly examine all target
variables.

" It provides a dynamic linking facility so various Para-Sights can be linked in on demand
without the need for recompilation of a target.

" Para-Sights uses the scan point mechanism, similar to the trace point in common
debuggers, in order to pass control and data to an arbitrary instrumentation server
called parasite running as an independent thread of execution within the same address
space.

" Some of the scan points can have the functionality of breakpoints, thus allowing
manipulations of the target's control flow.

1-18

Para-Sights provides a set of standard User commands. This set is extensible in order to allow for
customized commands. Here the basic description of the Para-Sights functionality is discussed.

1.5.4.1. Para-Sights Commands
There are several standard Para-Sights commands:

" run [argl arg2 ...]
- starts procedure main in a target. It passes an argc/argv pair to it.

" quit
- terminates the execution of a target

* hangup
- sends UNIX SIGHUP signal to threads of execution that are involved in the current
execution.

" load [-<port>] <parasite>
- call to the Para-Sight dynamic loader to load and link in a new code for an independent
parallel thread of execution (parasite) to act as a monitoring server. The new thread will
have its I/O bound to the Para-Sight console or, if port is different than 0, to a virtual
terminal running behind the port.

" dir
- do list of loaded parasites

" purge <parasite>
- dynamically remove a parasite

" help [topic]
- User help for a specific topic

1.5.4.2. Interface to Scan Points and Parasites
Parasite provides an environment for the design of custom parasites and associated Scan Points.

There is a set of standard functions which facilitate this process:
" Para-insert(source)

- inserts a scan point at the source line4.

" Paradelete(source)
- deletes a scan point at the source line.

• Paraset(source, triggerlist, quiet)
- set scan point trigger to a list of names.

" Para.start(name)
- starts a new thread of execution running the code of the named function.

" Paradisplay(sp)
- displays information for a scan point.

"Inserts and deletes are atomic operations and can be done while target is actually running.

1-19

1.5.4.3. Restrictions of ParaSights
There are several restrictions on the use of Para-Sights, but most of them have sources in the

current implementations. However, there are some, like those connected to the generally

nonreentrant UNIX code or libraries, which will require some effort to be fixed. Some of Para-Sight

restrictions according to [Aral 88] are:
" The target programs must be compiled with symbol tables included which usually

results in larger and nonoptimized code.

* The current directory must contain a symbolic link to a Para-Sight directory.

" The User is responsible to resolve any conflicts in names between Pars-Sight and target
functions and/or variables.

" Since the target runs as a thread, there are problems with the parallel execution of
UNIX kernel and library functions which are mostly nonreentrant.

" Garbage collection of previous broken runs is left to the User.

" Static functions or variables are not visible to the C interpreter.

1.5.4.4. Some Standard Parasites
In addition to supplying a nice interface for building customized parasites, Para-Sight includes

three standard parasites. These are:

" File browser
- is used for the inspection of a text file. It is based on the public domain program less
and its primary use is in conjunction with a source level debugger.

" The "C" interpreter
- its primary function is to allow the User to examine and modify target variables by
using the familiar C syntax. The interpreter is a part of Para-Sights but it is loaded and
executed on demand.

" Low-Level Debugger
- is also separately loaded. It provides a function called 'low level" which is implemented
as a scan point. It is used for:

" setting breakpoints

• timestamping

• counting instructions

" recording thread ids

• registering dumps

1.6. Contrasting the Paradise Design with Other
Instrumentation Systems

Here we compare the main features of Paradise with the instrumentation systems briefly

described in the previous section. Table 1-1 summarizes the findings in the functionality/model

dimensions. Table 1-2 contrasts the systems under the properties/user support dimensions.

Next, we will explore some of those dimensions in light of the Paradise features.

1-20

1.6.1. Intrusiveness
Paradise uses software instrumentation with dynamic enable/disable to observe and report

relevant events. This type of instrumentation imposes some changes in the behavior of the system

being observed. On the other hand, Honeywell's IDT uses hardware instrumentation in an attempt

to minimize or even to eliminate intrusiveness. Aside from the net advantage of eliminating

intrusiveness, hardware instrumentation does have some drawbacks. Some of them are:
" lack of portability

" difficult to program

" difficult to interpret results

* costly

* hard to implement after the fact

One of the main questions is, then, how intrusive is the software instrumentation approach used

in Paradise?

There are two types of intrusiveness; namely, the perturbation of absolute execution times of parts

of the program observed, and changes in the order of events. While the first type of perturbation can

not be completely eliminated, there are two approaches adopted in Paradise to deal with the

problem. First, we minimize the perturbation in execution time by choosing an efficient

implementation of the instrumentation mechanism. Initial feasibility studies [See Part II, Section 6]

have shown the intrusiveness to be under couple of percentage points for a reasonably instrumented

application running on top of CRONUS. Second, simple compensation for the cost of the

instrumentation is used by PARASCOPE when displaying the behavior of the system under

observation. These two techniques compensate, for all practical purposes, the first type of

perturbation.

The second type of perturbation, changes in the order of events, is a substantially harder problem.

There are no good ways to compensate for this type of perturbation. So, let us ask ourselves the

question of how seriously this type of perturbation will influence the system under test.

Dist. '"'-ted systems are known to behave undeterministically with respect to the order of events.

Her-e, any order of events is possible, including the ones exhibited through the instrumentation

perturbation. Then the new question becomes whether all orders of events are equally probable.

The answer to this question is still in the research domain. Available results [Segall 88b] seem to

point in this direction. Even if the answer to the previous question is negative, one still has to ask

when the order of events is important. A naive answer to this question will include at least the issue

of the observability of distributed system communication and synchronization.

The truth of the matter is that there are very few well engineered communication and

synchronization techniques which depend on the order of events. The real answer to the above

question is that the order of everts may be important to detect synchronization and communication

1-21

bugs. However, in this case, the answer to distributed synchronization and communication
debugging is not found in nonintrusive instrumentation, but in accurate replay of the run where the
error manifested itself Hence, system execution replay is the issue and Paradise makes ample
provision for supporting it.

To summarize, after careful exploration of the trade-offs between hardware and software
instrumentation, Paradise software instrumentation is implemented with intrusiveness

compensation and event replay.

1.6.2. Program Replay in Paradise
As mentioned above, program replay is one of the main mechanisms for distributed system

debugging.

Program replay in Paradise is supported by four elements:
* Paradise Preprocessor

* PARASCOPE

" The relational model

* The Integration Platform

The Paradise Preprocessor extracts syntactic and semantic information from the distributed
program. This information is organized in the relational form and stored in the Integration

Platform.

In addition, the Preprocessor automatically instruments the program. After an execution of a
distributed program, the instrumentation mechanism stores the information into the Integration

Platform.

Subsequently, PARASCOPE applies relations to both development-time information and run-time
information, displaying the execution of the program through flash views of the program text or of a
graphical representation of the program entity which generated the current event. Using this
approach , unlimited replay of a particular execution could be displayed and analyzed. This feature,
inherited from the PIE system, has been proven to be extremely useful.

1.6.3. Programmability and Flexibility
Paradise programmability and flexibility results from the extensive use of relational models and

relational query languages at all levels. This allows the user to ask high level questions and let the
system figure out the low level details regarding the means to answer the question. In addition, this
paradigm captures and stores the expertise required to instrument and to observe the system under

test. Ample practical experience with this model [Segall 831, [Segall 85, [Gregoretti 86) enables us
to be fairly optimistic on the usability and feasibility of the approach.

1-22

1.,4. Integration with the Honeywell Integration Platform
RADC has commissioned Honeywell to propose a tool integration strategy. The technical

approach proposed by Honeywell includes an object oriented data base to act as a repository of data
and programs, as well as an integration media among tools. Paradise fully subscribes to this

approach and plans to use the Integration Platform for the repository of the development time and

run-time information collected. In addition, depending on the performance of the Integration

Platform, Paradise may use it for communication among different parts of the system, such as the

Preprocessor and PARASCOPE.

Functionality/Model Dimensions

IDT PIE FIAT Para-Sight Paradise
(Honeywell) (CMU) (CMU) (Encore) (RADC)

monitoring hardware software software software software
static static dynamic dynamic

policies NA multi-level two-level NA multi-level

integration event- relational ad hoc NA relational
action

presentation event- graphical text NA graphical
action relational relational relational
(graphical)

Fault Injection NA NA yes NA yes

Environment yes NA yes NA yes
Control

Time yes yes software NA TBD
implementation

Automated NA yes NA NA yes
Instrumentation

Automated NA NA yes NA yes
Fault Injection I -

Experiment yes NA yes NA yes
Definition

Overall action relational ad hoc ad hoc relational
Model event I I I

Table 1-1: Comparison of Functionality/Model Dimensions

1-23

Properties/User Support Dimensions

IDT PIE FIAT Para-Sight Paradise
(Honeywell (CMU) (CMU) (Encore) (RADC)

programmability moderate high moderate high high

intrusiveness low moderate moderate moderate moderate
to
low

portability low high high moderate high

flexibility moderate high moderate high high

user moderate high moderate low high
support

experience low moderate moderate low NA
with
the system

Table 1-2: Comparison of Properties/User Support Dimensions

1-24

References

[Aral 881 Z. Aral, I. Gertner.
Non-Intrusive and Interactive Profiling in Para-Sight.
Technical Report ETR 88-006, Encore Computer Corporation, July, 1988.

[Bhatt 871 B. Bhatt, W. Heimerdinger.
The Instrumented Distributed Testbed (IDT): A Tool for Prototyping and

Evaluating Distributed Systems.
In AIAA Computers in Aerospace-VI Conference. October, 1987.

[Gregoretti 861 Francesco Gregoretti, Zary Segall.
Programming for Observability Support in a Parallel Programming Environment.
In Proceedings of Computer Science Conference. 1986.

[Rashid 87] R. Ra:h-id, A. Tevanian, M. Young, D. Young, R. Baron, D. Black, W. Bolosky,
J. Chew.
Machine-Independent Virtual Memory Management for Paged Uniprocessor and

Multiprocessor Architectures.
Technical Report CMU-CS-87-140, Carnegie Mellon University, July, 1987.

[Segall 83] Z. Segall, A. Singh, R. Snodgrass, A. Jones, D. Siewiorek.
An Integrated Instrumentation Environment for Multiprocessors.
IEEE Transactions on Computers c-32(1), January, 1983.

[Segall 85] Zary Segall, Larry Rudolph.
PIE: A Programming and Instrumentation Environment for Parallel Processing.
IEEE Software, November, 1985.

[Segall 88a] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,
B. Dancey, A. Robinson, T. Lin.
FIAT -- Fault Injection Based Automated Testing Environment.
In 18th International Symposium on Fault-Tolerant Computing. 1988.

[Segall 88b] Z. Segall, J. Barton, D. Vrsalovic, D. Siewiorek, R. Dancey, A. Robinson.
Fault Injection Based Automatic Testing- Practice and Examples.
In 8th International Symposium on Avionics, SanDiego. 1988.

[Segall 88c] Z. Segall, D. Siewiorek, D. Vrsalovic, F. Gregoretti, E. Caplan, C. Fineman,
S. Kravitz, T. Lehr, M. Russinovich.
Real Time Status Monitor for Distributed Systems.
April, 1988.
Final Technical Report, Carnegie Mellon University, Computer Science

Department.

[Vrsalovic 84] D. Vrsalovic, D. Siewiorek, Z. Segall, i% .. hringer.
Performance Prediction and Calibro: on for a Class of Multiprocessor Systems.
Technical Report, Carnegie Mell-,, University, August, 1984.

[Vrsalovic 88] D. Vrsalovic, Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplin, C. Fineman,
S. Kravitz, T. Lehr, M. Russinovich.
Performance Efficient Parallel Programming in MPC.
Technical Report CMU-CS-88.167, Carnegie Mellon University, July, 1988.

Part U1
Design Specifications

Table of Contents
1. Introduction 1
2. Application Client Attachments 5

2.1. Implementation of Attachments in UNIX 6
2.1.1. General Structure of an APC 6
2.1.2. The P-attachment0 Function 7

2.2. Workload Control Attachment 9
2.2.1. Paradise Environment 9
2.2.2. Monitor and Fault Profile 10
2.2.3. Paradise Signals 11

2.3. Monitoring Attachment 11
2.3.1. Detection 12
2.3.2. Filtering 14
2.3.3. Isolation 14
2.3.4. Notification 15
2.3.5. Monitoring Attachment Commands 15

2.4. FIA. Fault Injection Attachment 16
2.4.1. Fault Control Block 16
2.4.2. FIA Commands 16
2.4.3. Higher Level FT mechanisms 17

2.5. Data Collection Attachment 17

3. PMC - Paradise Monitor and Controller 19
3.1. WC - Workload Controller 19

3.1.1. Pcreate0 command 20
3.1.2. P-suspend0 command 20
3.1.3. Presumeo command 20
3.1.4. P_kill0 command 21
3.1.5. Pjoin0 command 21
3.1.6. P-signal() command 21
3.1.7. Pget-apc0 command 21

3.2. MC - Monitoring Controller 21
3.2.1. P_set.queue0 command 22
3.2.2. Pflush0 command 22
3.2.3. P_setsensor0 command 22

3.3. FIC - Fault Injection Controller 23
3.3.1. Pfaultremove0 command 23
3.3.2. PsetJault0 command 23

3.4. DCC - Data collection controller 24
3.4.1. Pcollect0 command 24
3.4.2. Pget.vers() corn, -and 24

3.5. Miscellaneous PMC Fuactions 24
3.5.1. Pinitialize command 24
3.5.2. Pgettim~i) command 24

4. PEM - Paradise Experiment Manager 25
4.1. PEM Abstractions 25

4.1.1. WM - Workload Manager Abstractions 25
4.1.2. Monitoring Manager Abstractions 26

4.1.2.1. User Sensors 26
4.1.2.2..System Sensors 27

4.1.3. Fault Injection Manager Abstractions 27
4.1.4. Data Collection Manager Abstractions 29

ii

4.2. PEM Commands 30
4.2.1. General Experiment Manager Commands 30

4.2.1.1. Experimentstart0 command 30
4.2.1.2. Experiment_end0 Command 31
4.2.1.3. Waito command 31
4.2.1.4. ForO - Endfor0 command pair 31
4.2.1.5. IfO - Elseif0 - Endif0 commands 31
4.2.1.6. Time() command 32
4.2.1.7. Device() command 32
4.2.1.8. Getword0 command 32
4.2.1.9. Put_word0 command 33

4.2.2. Workload Manager Commands 33
4.2.2.1. Set_env0 - Get-env0 commands 33
4.2.2.2. Workload_start0 command 33
4.2.2.3. Workload_suspend0 - command 33
4.2.2.4. Workload_resume0 - command 33
4.2.2.5. Workloadkill() - command 34

4.2.3. Monitoring Manager Commands 34
4.2.3.1. Change.monprofile0 command 34

4.2.4. Fault Injection Manager Commands 34
4.2.4.1. Changefi-profile0 command 34

4.2.5. Data Collection Manager Commands 34
4.2.5.1. CollectO command 34

5. Paradise Tools 36
5.1. Library Preparation 40

5.1.1. Workload Librarian 40
5.1.1.1. Paradise Preprocessor - PPROC 40
5.1.1,2. Paradise Roadmap - PARAMAP 41
5.1.1.3. Paradise Workload Generator- WLGEN 42
5.1.1.4. Paradise Postprocessor- POPROC 43
5.1.1.5. The Paradise Workload Library 43

5.1.2. Fault Librarian 43
5.1.2.1. Paradise Fault Class Generator - FCGEN 44
5.1.2.2. Paradise Fault List Generator - FLGEN 45
5.1.2.3. The Paradise Fault Library 46

5.2. Experiment Definition 46
5.2.1. Experiment Definition Compiler - EDC 46
5.2.2. Experiment 11O Devices 47
5.2.3. Experiment Definition Variables 48

5.3. Experiment Execution 48
5.3.1. Runtime Experiment Controller. REC 48

5.4. Data Presentation and Analysis 49

6. Paradise Feasibility Study 53
6.1. General D3
6.2. Implementation Experiments 53

6.2.1. APC Attachment Implementations 53
6.2.1.1. Execution Time Measurement Results 54

6.2.2. Workload Controller 56
6.2.3. Miscellaneous Measurements 57

6.2.3.1. Results 57
6.2.3.2. GetDATE and gettimeofday 58

6.3. Example Application 58

6.3.1. Matrix Multiplication 59
6.3.1.1. Results 59

7. Design Conclusions 61
Appendix I. Sensor Object Manager Specification 65
Appendix II. Workload Controller 66

11.1. Manager Description 66
11.2. Workload Controller Operation Implementation 67

Appendix III. Experimentation Example - Distributed Matrix 71
Multiplication

M.1.1. The Paradise Environment 71
M1.1.1. Experimentation in the Paradise Environment 71
MT.1.2. Working in the Paradise Environment 73

111.2. Description of the Example Workload and Experiments 73
11.3. Fault Free Experimentation 74

111.3.1. Workload Preparation 74
1.3.1.1. Application Code Development 75
111.3.1.2. Matrix Object Manager (APM) 75
111.3.1.3. APC Code 76
1.3.1.4. SAPC Code 77
111.3.1.5. PPROC Pass 78
111.3.1.6. Instrumented APC Code 78
111.3.1.7. Sensor Profile 79
111.3.1.8. Compilation and POPROC 80
IM.3.1.9. Element Profile 80

H1.3.1.10. Monitor Fault Profile (MFP) Generation 80
111.3.1.11. Workload Definition 81

M.3.2. Fault Preparation 82
1M.3.3. Experiment Description 82
M1.3.4. Experiment Execution 84

111.3.5. Data Collection 85
11.3.6. Data Analysis 86
MI.3.7. Data Presentation 86

111.4. Fault Injection Experimentation 86
M1.4.1. Workload Preparation 87
M1.4.2. Fault Preparation 87

M.4.2.1. Fault Generation Tools 87
M.4.2.2. Creation of Fault Class Definitions 88
M.4.2.3. Generation of Fault lists 89
M.4.2.4. MFP Generation and Fault Installation 90

M.4.& Experiment Description 91
1.4.4. Experiment Execution 92
1IM.4.5. Data Collection 92
111.4.6. Data Analysis 92
M.4.7. Data Presentation 93

Appendix IV. The Attachments 94
IV.1. APC Monitoring Attachment 94
IV.2. APC Data Collection Attachment 94

Appendix V. List of Abbreviations 96

Index 99

V

List of Figures
Figure 1-1: Paradise Configuration 1
Figure 1-2: Structure of a Paradise Node 2
Figure 1-3: Distribution of Paradise Mechanisms 3
Figure 2-1: Dynamic view of a Typical Paradise Workload 5
Figure 2-2: Generation of an APC 6
Figure 2-3: Structure of a Typical APC 6
Figure 2-4: Structure of the P-attachment Function 8
Figure 2-5: APC Structure 9
Figure 2-6: Monitor and Fault Profiles 10
Figure 2-7: A part of an APC without (a.) and with (b.) sensors inserted 13
Figure 2-8: Paradise Sensor Control Block 13
Figure 2-9: Internals of a Paradise sensor 14
Figure 2-10: Fault Control Block Layout 16
Figure 3-1: Layout of an APC Control Block 19
Figure 4-1: Memory Fault Class 28
Figure 4-2: Register Fault Class 28
Figure 4-3: Components of a Fault Instance 29
Figure 5-1: Paradise Control and Data Flow 36
Figure 5-2: Paradise Integration Platform 38
Figure 5-3: Paradise Menu Structure 38
Figure 5-4: Flow of an Experiment 39
Figure 5-5: Typical Monitoring and Fault Injection Experiment 39
Figure 5-6: PARAMAP view of a matrix multiplication APC 41
Figure 5-7: Paradise Fault Librarian 45
Figure 5-8: Data Involved in Experiment Preparation 47
Figure 5-9: Experiment Data Collection 48
Figure 5-10: Histogram Presentation of the Experiment Data 49
Figure 5-11: Graph Presentation of the Experiment Data 50
Figure 5-12: Combined Presentation of the Multiple Experiment Data 50
Figure 5-13: Data Access View 51
Figure 5-14: PARASCOPE Dynamic View 52
Figure 6-1: MA/DCA as Object Manager 54
Figure 6-2: MA/DCA as File Write Manager 54
Figure 6-3: MA/DCA as Direct File Write 55
Figure 6-4: Manager Overhead 55
Figure 6-5: MA/DCA as Buffered Sensors 56
Figure 6-6: WC Time Measurements 57
Figure 6-7: Global Time Measurement Pseudo Code 57
Figure 6-8: Global Time Comparison 58
Figure 6-9: GetDATE vs. gettimeofday 58
Figure 6-10: Matrix Multiplication Time Measurements 60

List of Tables
Table V-l: Description of Abbreviations. 96

1

1. Introduction

This document describes a preliminary design for the Paradise system. This design assumes that

Paradise is running on the top of DISE in a distributed system consisting of a number of computers

connected via a communication network as depicted in Figure 1-1. There is no restriction on the

number of nodes or the type of network used. It is also assumed that all the nodes are running the

Cronus [Schantz 85, Schantz 86] operating system and that the whole system exports some notion of

global time to all of its nodes. In the following text the Paradise nodes are referred to as PNODES.

PNODE #1
PARAOE
Workstafles

ioi

PNcOE NN

DIE

Figure 1-1: Paradise Configuration

At least one of the PNODES in a Paradise system must be able to run a special application which

requires specific graphic i/o capabilities (i.e. this node has to be able to run X windows Ver. 10 or

higher [Gettys 87, Swick 87]). If a node is running such an application it is referred to as a Paradise

workstation, or PWS, in the following text. Note that a PNODE can act as PWS and also run

application clients at the same time, but one has to keep in mind the PWS's high resource utilization

requirements when doing this.

Figure 1-2. depicts the structure of a single Paradise node. Each node is running a host operating

system on top of which resides the Cronus kernel. Paradise introduces four additional functionalities

into a system:

e Workload Control - implements the mechanisms needed to manage a set of clients
distributed in a system. It deals with issues of managing their dynamic behavior:
creation, termination, suspension, continuation, joining and signaling. The workload
control mechanisms maintain systemwide unique ids for all the clients. Associated
operations are transparent to the locations of their subjects and objects within the
Paradise system (i.e. a performer client uses a workload control operation via an unique
interface despite the fact that the client this operation refers to may be in a local or some
remote node of a system).

e Monitoring - implements the mechanisms needed to monitor the execution of a
distributed workload and to record the information generated during the execution.

2

Figure 1-2: Structure of a Paradise Node

These mechanisms deal with the issues of: identifying an event, filtering out events that
are of interest, isolating relevant data (like timestamps and various other run-time
information) about an event, and recording events in a local repository.

" Fault injection - implements the mechanisms needed to allow for a corruption of a
distributed application. This includes mechanisms for generation of special FI triggering
events, dynamic identification of the Fl targets and administration of faults.

* Data collection - implements the mechanisms needed to retrieve event data from the
local repositories and transfer them to a PWS in control of an experiment.

During the execution of any parallel/distributed application each PNODE runs a set of Cronus

clients associated with the particular application (these are referred to as Application Clients, or

APCs) and a special process called the Paradise Monitor and Controller, or PMC. All four Paradise

support mechanisms are distributed between the PMC and APCs in each PNODE. The PMC in each

PNODE communicates with the APCs in the node and also with the PWS which is currently in

control of the system.

The PWS component assoc:! ;cd with the run-time control of an experiment is called the Paradise

Experiment Manager, or ' tM. PEM consists of the following components:

• WM - Worklnad Manager

" MM - Monitoring Manager

" FIM - Fault Injection Manager

" DCM - Data Collection Manager

Each component which encapsulates a specific functionality in the PWS has a counterpart in the

PMC which is referred to as a controller. The following controllers compromise the PMC:

" WC - Workload Controller

" MC - Monitoring Controller

3

PARIAD)ISEO B.

Workstation Create

Fgr13:DsrbtoofParadise Mechani0-tsms

E*.d..t K)I Pa~Suse ienc

FIC Faul Jj ctonito C ontr ol l
Digna l Controller l oDataeo o t l

Wo*loAd status

M* aA9.,Wl Mn g WC Aa m

Fult lotnco thm

InjeAton FemManager IFOlM] sesor

edinttion

Montor (PM& CnlrCl

Maager M w h s t e r

COlhteOn Data

DISE..

Figure 1-3: Distribution of Paradise Mechanisms

e FIC - Fault Injection Controller

fe DCC - Data Collection Controller

Similarly, each part of the PMC has a counterpart in each of the APCs. These are called the APC

attachments. The following attachments are found in an mPC:

t WCA -Workload Control Attachment
" MA - Monitoring Attachment

" FIA - Fault Injection Attachment

" DCA - Data Collection Attachment

Subcomponents of each of the functionalities are distributed and supported in the PWS, PMC, and

PC as illustrated in Fig 1-3. The interaction is by means of messages.

After this brief introduction, the following text will discuss the specific design details by using a

bottom-up approach. In this manner the four attachments will be discussed first in Chapter 2. Next,

the Paradise Monitor and Controller (P1VC) design will be discussed in Chapter 3. Chapter 4 will

discuss the design of the Paradise Experiment Manager (PEM) which constitutes the Paradise

Workstation (PWS) support for experimentation. Finally, Paradise tools that constitute the PWS

software are discussed in Chapter 5.

After the preliminary Paradise design is presented, results from a small feasibility study are given

in Chapter 6. These results present some basic performance measures and illustrate the more than

acceptable low level of Paradise intrusiveness into workload execution. Also, an example

application, run and monitored under Cronus and Paradise, can be found in the Appendices.

In the conclusion we present how the Paradise Run-time support mechanisms fit into the complete

Paradise picture.

5

2. Application Client Attachments

One can envision a distributed application with a number of APCs running in parallel in different
nodes of a system. Some of them may even have low enough resource requirements that they can

run concurrently in the same node. Cronus supports node independent client code since the object
related operations are transparent to the node boundaries.

Rbepstor epos1toR pstr

Client1 Fil

Figure 2-1: Dynamic view of a Typical Paradise Workload

Figure 2-1 depicts a dynamic view on a typical Paradise workload. There is a set of AP~s

communicating via shared Cronus objects and storing monitoring data into local repositories

provided by the Paradise System. 1 There are several operations performed on the control or data

flow of an APO which consequently break its abstraction. In the Paradise system, these operations

are performed by a set of "Trojan horses' called the APO attachments. Due to the fact that Cronus

doesn't explicitly support an alternative control flow within an APO in a portable way, Paradise
must rely on the available host operating system mechanisms to implement such a support function.

This must be done specifically for each of the host oi~erating systems in use. In order to clarify this

statement, let us assume for a moment that t host OS is UNIX. In such a situation Paradise can
take advantage of UNIX signals to inrplement 'alternate control flow mechanisms for Ehe
attachments.

An APC is generated from a User source code in several steps. First it is processed by the

Paradise Preprocessor (PPROC), which analyzes the source and instruments it. After this, the

resulting code is processed by the Cronus compiler and finally by a C compiler. During the linking

process the attachments are added to an APO executable from the Paradise libraries. Figure 2-2

tParadise local repositories are files which will Re described in detail in sction 4.1.4.

6

Libraries Link POPR:C Cint

SAPC

Usr' Poga Preprocessor DPtabfsee

Sensor
Profile

Figure 2-2: Generation of an APC

depicts this process.

2.1. Implementation of Attachments in UNIX

2.1.1. General Structure of an APC
Figure 2-3 depicts the structure of typical APC source code after it has passed through the

Paradise Preprocessor PPROC. It consists of the customary User defined C code for a UNIX process

with several additional statements inserted by PPROC.

.... APC Procedures...

...... (user code)

extern void
P_attachments() ; /*(inserted by the PPROC)*/

main (argc, argv)
.int argc; char **argv;

{
P_init (&argc,argv); /*(inserted by the PPROC)*/

(user code)
(including Paradise calls)

P exit (; /* (inserted by the PPROC)*/

Figure 2-3: Structure of a Typical APC

7

There are three basic PPROC inserts in this example 2 ; these are indicated by the statement

comments.

First, an external procedure, P._attachments, is declared. This procedure defines code to be run on

command in order to invoke attachment functions.

Second, immediately after starting, each APC executes the P_init0 call in order to:
" Create a communication peer to receive attachment commands (i.e. in UNIX this is done

by creating an attachment socket per APC);

" Create an alternative control flow to execute Pattachment functions on demand (i.e. in
UNIX this can be done by setting up P..attachments as a signal handler for SIGIO and
by setting up the attachment socket to work in the interrupt mode);

" Initialize the attachments;

" Notify the creator (i.e. the local PMC) about its startup and report its UNIX pid, Cronus
id and the attachment socket name (or any other internal Paradise ids needed for this
matter); An entry is created in the PMC database using this APC information.

Third, prior to exiting, the APC will execute the Pexit() call which will:

" Remove the APC's entry from a local PMC database;

" Perform closing functions for the attachments;3 Terminate an APC;

2.1.2. The Pattachment0 Function
Each of the attachments consists of three functionally distinct parts:

" initialization

" body

" closing

Initialization and closing operations are performed by Pjnit0 and P_exitO, respectively, while the

P_attachment() function implements the attachment bodies. Figure 2-4 depicts the structure of the

P_attachment function used as the SIGIO signal handler in a UNIX implementation.

It is important to remember that the P-attachments0 function is used a3 an UNIX SIGIO handler

and that it will be invoked every time a command message is sent to the !JPC's attachmen socket.
4 The format of attachment messages is defined by the content o' the first byte, specifying the

attachment to be invoked. The rest of the command message is then analyzed after the specific

attachment has been actually invoked. Then the appropriate action is performed. Due to ther fact

21n addition to these inserts, PPROC will insert a number of other sensors into an APC automatically depending upon the
code structure; Sensors ame described in detail in Section 2.3.

3in the case of multiple exits in an APC, PPROC must insert P_ezit() calls at all the exits.

4This socket is created during P._init() execution.

8

void
P attachments()
{

char buffer[...

receive command(buffer) /*co nand message*/

switch (att) (
case WCA:

break;
case MA:

break;

case FIA:

break;

case DCA:

break;
default:

sendreply(buffer); /*reply message*/

Figure 2-4: Structure of the P..attachment Function

that the attachment code performing the action is an actual part of an APC,5there are no restrictions

on the kind of actions an attachment can perform. At the end of an operation a reply message is sent

to the requester in order to deliver the result status of an attachment action. The default part of the

switch statement in Figure 2-4 provides for associated messages involving error recovery and PMC-

APC protocol issues.

There are several commands associated with each attachment. As depicted in figure 2-4 these

commands are sent in the form of a message to an attachment.

There are four attachments to an APC as presented in Figure 2-5. The first byte of the message,

from a PMC to an attachment, serves as the control code and determines the attachmen't to be

invoked. Paradise attachment control codes are as follows:
I -WCA

.2-MA

* 3- FIA

* 4 -DCA

"Pleas" remember that attachments are "trojan horses".

9

Client Code

Workload Fault Data
Control Monitoring Injection CollectionControl Attachment
Attachment Attachment Attachment

Figure 2-5: APC Structure

The command message formats for different attachments and their particular functions are

discussed below.

2.2. Workload Control Attachment

Paradise workload control mechanisms implement a set of functions designed to create, control

and synchronize distributed workoads. There are two main groups of workload control mechanisms:

tasking and signaling. In the UNIX implementation of Paradise, both groups use underlying UNIX

mechanisms while the attachment code properly deals with the required interfacing details for

invoking these mechanisms.

A Paradise environment is a set of string variables that axe automatically inherited by all the

children of an APC. In this way some global values which are not likely to be changed during an

experiment can be shared by all the APCs.

2.2.1. Paradise Environment
WCA supports the notion of the Paradise environment. Each APC inherits the Paradise

environment of its creator. A User can control its environment via the following functions:

* Pgetenvironment(envvar) - returns a pointer to the content of the environment
variable with the name equal to envvar. If env-var doesn't exist, it will return NULL.

* P-setenvironment(env-var, val) - sets the value of envvar to the string val points to. If
the env-var doesn't exist, WCA will create one. If val is a NULL pointer, envvar will be
removed.

The Paradise environment is implemented as an array of characters consisting of records

10

separated by blanks. Each record represents an environment variable in the following format:

%envvarname={identifier,number).

The maximum size of an environment array is 256 characters.

There are three important predefined environment variables for each APC:

" The first one, called P..queue, defines the size of the monitoring queue.6

" The second one, named P._creator, holds the creator's pointer in the Paradise standard
notation form. This notation consists of two integers separated by a ':' as the delimiter
(i.e. xxx:yyy). The first integer defines the creator's node id, while the second one defines
its APC id.

" The last one is P_.rofile and contains the name of a file holding monitor and fault
profiles for an APC.

In each distributed application there will be one initial APC which was started manually from a

shell. Such an APC will have father's APC id of -1 and father's node id equal to its own.

2.2.2. Monitor and Fault Profile
Sensor and fault profiles control the functional characteristic of the MA and FIA, respectively.

There are actually two lists located in the APC attachment. The first one is called P_.MON.PROF

and consists of sensor control blocks. The second one is called PFAULT-PROF and consists of fault

control blocks. Upon creation (i.e during execution of Pinit), the APC fills these lists from the file

pointed to by the Paradise environment variable %P..profile.

1 31 10 20 10 2 7 14 1 3

3c500 8 05c3214f 1 16

Figure 2-6: Monitor and Fault Profiles

Figure 2-6 depicts the layout of the sensor and fault profiles. Records are written one after

another separated by the CR character. Sensor records are written first and fault records after

them. The two groups are separated by the '@' character. The example shows one monitor control

block and one fault control block.

The various fields in the example have the following interpretations:8

6Please corlault Section 2.3.4 on Notification.

7Monitor and fault profiles are initial contents of monitor and fault control blocks in an APC. The specifications for monitor

and fault control blocks are given in Sections 2.3 and 2,4.

'Please refer to the layouts of the monitor (Section 2.3) and fault (Section 2.4) control blocks.

11

" SENSOR CONTROL FIELDS:
" enable [= 11 - sensor will be initially enabled

" status [= 31] - sensor will use counter, will be repetitive, will enable its
subordinates when itself active, will record its event and will apply the faults
listed in its control block.

" prolog..base r= 101 - the first 10 times the sensor fires it will be inactive (i.e. its
filtering function will return 0)

" actbase [= 201 - the next twenty times the sensor fires it will be active (i.e it will:
" store its event record in the local queue

" on the first active fire it will enable its subordinates (with id = 7 and id = 14)

" on the last active fire (i.e. 20th) it will disable the same subordinates

" on each fire it will apply fault id = 3 until its repetition counts runs to 0

" epilogue-base [= 101 - the next ten execution times the sensor will be inactive
again

" there are 2 subordinate sensors (with sensor-id = 7 and sensor-id = 14)

" there is 1 fault target with fault_id = 3

" FAULT CONTROL FIELDS:
* start [= 3c500] (virtual address)

" the fault mask is 8 bytes long and its value is: '05c3214f'

" the function to apply the mask is bitwise logical AND (i.e. 1)

* repetition count [= 161

2.2.3. Paradise Signals
The Paradise system implements its own set of signals. There is a set of 32 signals available to the

User. They are used within an APC via the following commands:
" P._signal(clientid, signal) - sends a signal to a client specified by a client id in the

Paradise standard notation.

" P_handler(signal, handler) - sets up the procedure pointed to by the handler parameter
to act as a signpl handler for the specified signal.

2.3. Monitoring Attachment

Monitoring attachments consist of mechanisms required to support the monitoring activities in

Paradise. There are four phases in the monitoring process:
" Detection

" Filtering

" Isolation

" Notification

12

2.3.1. Detection
Detection in monitoring can be accomplished in two ways: active (i.e. sampling) or passive (i.e

tracing). Paradise predominantly uses the latter technique by means of sensors. Sensors are inserts

into the User code by the PPROC which analyzes the code and instrumentscertain predetermined

syntactic constructs. In addition to these, the User can directly add additional sensors to the source
code. Due to the fact that a sensor is a part of APC's control flow, detection is passive (i.e. a sensor

detects an event only at the time that the code segment containing the sensor is executed). On the

other hand, in situations where the sampling technique is necessary, the User can write a custom

signal handler to perform sampling upon demand.

Figure 2-7a depicts the C source for a typical APC with a main program consisting of one while

loop. Along with other code, a call to a procedure (i.e. procedurel) is executed inside the loop. As

explained before in Section 2.1.1, the P._init() and P _exit() functions from the Paradise run-time

library are inserted by the PPROC. PPROC will also automatically insert a number of sensors.

Figure 2-7b shows several such automatically inserted sensors. In this example PPROC

instrumented the following locations:

* the beginning and the end of main function

" the top and the bottom of the while loop

" the entry and the exit of procedurel call

There are two important points to notice at this point. First, PPROC will automatically assign ids

and types to any associated group of sensors. Second, in addition to the regular exits from various

syntactic constructs, PPROC will also instrument all irregular exits (i.e. the break from the while

loop in Figure 2-7). PPROC will also do the same in the case of goto or exit statements, but in the

latter case it will insert a P-exit() after the added APCEND sensor.

A Paradise sensor is the C macro construct depicted in Figure 2-9. It accepts two input

parameters: a type and an id. Each APC gets a PMONPROF array (See Figure 2-8) which contains

a set of sensor control blocks. The sensor code is executed each time an event is detected. The first

step is to check .,hether or not the enable flag in the sensor control block (associated with the the

executed sensor id) i., L.-t. If this flag .s not set (i.e. the sensor is disabled), APC execution continues

as if there were - , sensor inserted. As a result, there is very low overhead per disabled sensor.

If a sensor has been enabled, the filtering function will first be performed. Then, depending on the

result of filtering, execution will or will not proceed. If the sensor execution proceeds, the isolation

phase is executed next. During the isolation phase all necessary data will be extracted from the

run-time data structures and then entered into the queue during the notification phase.

13

main (argc, argv)
int argc; char **argv;

P_init (&argc, argv);

while(....)(

if(.....) break;

procedurel (............);

}
P exit(;

a.

main (argc, argv)
int argc; char **argv;
{

P init (&argc, argv);
P_sensor(PAPCSTART,idl);

while (....){
P_sensor(PLOOPTOP,id2);

........

P_sensor(PLOOPBREAK,id2);
break;

I

P_sensor(P_PROCENTRY,id3);
procedurel (............
P_sensor(PPROCEXIT,id3);
.. ,............°......

P_sensor (PLOOPBOTTOM, id2);

P sensor(PAPCEND,idl);
P exito;

b.

Figure 2-7: A part of an APC without (a.) and with (b.) sensors inserted

typedef struct (
boolean enable;
int status, state;
int act-counter, prolog base, act base,

epilogue_base;
int subordinates (MAX SUBORDINATZS1;
int fi_targets[MAX_FITARGETS];

} P_sensor ctrl_bloktype;

Figure 2-8: Paradise Sensor Control Block

14

#define P sensor(TYPE, ID)
if(PSEN_CTRLBLK[ID] .enable) \

if (P filter(ID))
P_notify(P isolate(TYPE))

Figure 2-9: Internals of a Paradise sensor

2.3.2. Filtering
One can assume that filtering is performed in two steps. First, the enable flag is tested and then,

if true, the filtering function continues. The exact behavior of the filtering function depends on the

status word of the sensor set by the User, and the current internal state set during execution.

The Sensor Status Word contains five bits and is defined as follows:

* 20 - COUNTER -Use the counter if set. The counter can be in three states: prologue
active and epilogue. Filtering is successful during active count and unsuccessful during
other two states. The current state is recorded in "state". Each time the counter reaches
zero it is reloaded with the proper base and the state is set accordingly.

* 21 - REPETITIVE - If not set, self-disable while entering epilogue state.

* 22 - INDIRECT - If set, enable sensors listed as subordinates 9 when entering the active
state and disable them when entering the epilogue state.

* 23 - RECORD - If set, record event as defined by the type parameter.

* 2 4 - FAULTINJECT - If set, apply the faults specified by the listed fi-targets, (which are
indices into the fault profile). Note that the original contents of the targets are saved
before fault injection.

* 2 5 - RESTORE - If set, restore corrupted segment to the content it had before the last
faultinjection.

10

2.3.3. Isolation
Several actions are taken during the isolation phase for a Paradise sensor. First, a timestamp is

takenl; then the performer id, which is the Cronus client id, is retrieved. After that, this data,

together with the sensor id and its type, are stored in the sensor record.

In order to make sensors as efficient as poszible, the sencor record is produced in a machine

dependent and variable format. The Datr. Collection Controller in the PMC will later transform all

monitored data into Cronus canonical types to provide a uniform picture to PWS.

gOnly sensors in the same APC can be subordinates!

'°Please note that FAULTINJECT and RESTORE are mutually exclusive due to the'fact that, if both are applied, no net
change will occur.

"The Paradise system expects that the local clock is synchronized with all other clocks in the system, or that PWS has
accurate data about their current interrelationship. We will discuss later in this text what to do if DISE does not export this
notion of global time.

15

The type of the sensor record is defined by the content of its first byte12.

2.3.4. Notification

Sensor records created during the isolation process are first stored into a local monitoring

queue.This is a simple FIFO queue created during the execution of a P-init0 call. The size of this

queue is initially defined at APC creation by the Paradise Environment. 13Later, during execution,

this size can be adjusted by a command to the monitoring attachment. When a local monitoring

queue fills up, it will be emptied during the next active sensor execution. The content will be written

into a local file which is also automatically created during the execution of the P..init0 call. 14

2.3.5. Monitoring Attachment Commands
The attachment commands are sent from the PMC to the APC in the form of a message. The first

byte of this message determines the attachment to be invoked. Based on the definition in Section

2.1.2, the code designation for the MA is 2. The second byte of the message defines the command to

be executed. The rest of the format is command dependent. All the parameters are given in the local

format due to the fact that the conversion is done in the PMC. These are the commands related to

the monitoring attachment:
* 1 - Set monitoring queue size. The size is given as an integer and represents the number

of event records that can fit in the queue. If the size is made smaller than the number of
records currently resident in the queue, it will be flushed prior to resizing.

* 2 - Flush the content of a monitoring queue into a local repository.15

* 3 - Enable sensor(sensor.id)

* 4 - Disable sensor(sensor-id)

* 5 - Set sensor status(value, sensor..id)

* 6 - Set base count(value, counter, sensor-id), where the counter is one of the following:
" prologue

• active

• epilogue

* 7 - Add subora, ,.%te(subordinateid, sensor..id)

* 8 - Remove su'oidinate(subordinae.id, sensor-id)

* 9 - Remov- all subordinates(sensor-id)

* 10 - Add fault(faultid, sensor-id)

12Please notice that the exact layout of the sensor record will depend not only on the cpu type but also on the host OS. As an

example, take the PC-RT which uses three different floating point formats depending on the operating system.
13plese refer to Section 2.2 for ;n exact definition of the Paradise Environment

"Please consult Chapter 2.5 for details on data collection.

"eThe monitoring queue is also flushed during the execution of a PexitO procedure.

16

* 11 - Remove fault(faultid, sensorid)

* 12 - Remove all faults(sensor-id)

The last byte of the command is a "link" byte. If this byte is different from 0, then the next

monitoring command is contained in the same message. In this way several commands can be
linked in the same message for efficiency purposes.

2.4. FIA - Fault Injection Attachment

The FIA implements the mechanisms required to perform fault injection in an APC. At the

attachment level a fault is represented as a corruption of one or more memory locations.

2.4.1. Fault Control Block
typedef structure {

char *start ;
int len;
char mask[256];
char original[256];
int function;
int repetition;

}faultcontrolblock;

Figure 2-10: Fault Control Block Layout

Figure 2-10 presents the layout of the fault control block in Paradise. Particular fields in the fault

control block have the following meanings:
" start - address of where to start to corrupt memory locations

• len - length of the array to corrupt, in bytes

" mask - pattern mask to be used to corrupt the memory content

" original - original content saved prior to corruption by a fault

* function - function to use to bitwise combine content of the mask and the original
memory to generate a new content

* repetition - number of times to apply fault

A fault is executed by an active sensor if its FAULTINJECT flag in the status word is set. Each

time after a fault is executed its repetition counter is decremented. When the repetition counter

reaches zero, the fault is disabled.

2.4.2. FIA Commands
The attachment commands are sent from the PMC to the APC in the form of a message. The first

byte of this message determines the attachment to be invoked. Based on the definition in Section

2.1.2, the code designation for the FIA is 3. The second byte of the message defines the command to

17

be executed. The rest of the format is command dependent. All the parameters are given in the local
format due to the fact that the conversion is done in the PMC.

The following commands are those related to the fault injection attachment:
* 1 - Set start(start, fault,_id). Start is given as an address in the virtual space of an APC.

The fault id is the index of the relevant fault control block in the fault list.

* 2 - Set mask(size, mask, fault.jd). Set the mask size and contents for a fault.

* 3 - Set function(funct, faultid). Functions are as follows:
• No action

" bitwise logical AND

* bitwise logical OR

" bitwise logical XOR

" move mask

" add character (i.e. the first byte of the mask is used as a character to add to a byte
pointed to by start)

" add integer (i.e. the first four bytes of the mask are treated as an integer to be
added to an integer pointed to by start)

" add float

* 4 - Set repetition count (count, fault_id) sets the repetition count in the fault control
record to count.

2.4.3. Higher Level F1 mechanisms
In practice there are many situations where an experimenter is interested in upsetting some

higher level mechanisms. Typical examples of these are: communication mechanisms, timers etc. All
of these high level upsets can be translated into low level memory corruptions provided that the

structure of the supporting code is known. As an example, one could envision the emulation of a
message drop fault by changing some flag in the communication driver procedure. In order to obtain

such results most effectively, such places to corrupt in order to emulate higher level faults in Cronus

or host OS code should be carefully selected and preprogrammed.

2.5. Data Collection Attachn-ent

Sensors write their event records into the local monitoring queue. The size of this queue is

determined by the Paradise environment variable P..queue. Each time this queue fills up, its

contents are flushed into a special file. This file, which is created for every APC during the execution

of the P_init0 call, is assigned a standard name built from the prefix "P_S", the UNIX pid of an APC

and the version number concatenated into one string. An example of a monitoring file name would be
PS1235_1. The '1' at the end shows that this file is the first version. Each additional file created

after a flush would be correspondingly designated by an incremented version number.

18

DCA supports a special command which allows for the dynamic retrieval of monitoring data

without the need to interrupt the ongoing monitoring process. This command directs that a file

P Sxxxxxn be closed and that another file P Sxxxxxn+l be opened and submitted to the DCA in

an APC. The advantage of this operation is that the APC continues undisturbed in monitoring the

execution, while the previously recorded events are available for analysis.

19

3. PMC - Paradise Monitor and Controller

The PMC is a Paradise server which runs in each PNODE. It is implemented as a Cronus object

manager with an associated set of commands. Its functionality is divided among four controllers:
" Workload Controller (WC)

" Monitoring Controller (MC)

" Fault Injection Controller (FIC)

" Data Collection Controller (DCC)

Each of these controllers provides support for a related subset of Paradise User commands utilized

in workload APCs. In addition there are several other general functions which are unrelated to any

of these controllers.

3.1. WC - Workload Controller
The WC supports commands for the creation and synchronization of APCs. It maintains a list of

all active APCs in the local PNODE. Each record in the list is referred to as an APC control block.

typedef struct{
UID ProcID; /* Cronus UID of process */
DATE Timestamp; /* Time process was created */
int PID; /* The UNIX process ID *1
int group; /* The group membership *1
int Type; /* Type of creation */
int Status; /* Status of execution *1
char *ProcName; /* Name of the process */

} P_APC controlblock;

Figure 3-1: Layout of an APC Control Block

Particular fields in the APC control block have the following meaning:
" ProcID is an identifier given to an APC process by Cronus.

" Timestamp is the time of creation.

" PID is an identifier given to the APC by the host OS. For exr-i.,ple, in the UNIX
implementation of Paradise, this field is identical to the UNIX T:a for an APC.

" group is the id of the Paradise group of which the APC is member. (APCs may be
associated by means of a User designated assignment to a group.) Each APC inherits its
group id from its father. It is stored in its Paradise environment variable P-group. If
this environment variable is nonexistent in an APC's Paradise environment, it is
assumed to be 0 by default.

* The variable status reflects the status of an APC.

" Each APC retains the name of its object file in ProcName. For UNIX implementations
this variable is identical to argv[0] for a particular APC.

The APC id of each APC is defined by it§ index into the APC list. All WC commands return a value

20

of P.JTNSUCC in the case of an error. When this occurs, a description of the particular error can be

found in the global variable Perror.

An APC keeps a record of all APCs it created by maintaining the respective pointers to their APC

structures. An APC structure is defined as follows:

typedef struct(
int node, group, id;

)Papc;

#define PNOAPC (Papc *)0

The WC commands are described in the text below.

3.1.1. Pcreate0 command
P_apc *

P create(node, executable, argc, argv, para_env, profile)
int node;
char *executable;
int argc;
char **argv;
char *paraenv;
char *profile;

Creates a new ARC by starting the executable binary file pointed to by executable with argc

parameters in argv. The new APC inherits the Paradise environment pointed to by para_env.

Returns a pointer to an APC record containing the node and ARC ids, or PNOAPC in the case of a

failure.

3.1.2. P._suspend() command
int
P_suspend(apc_ptr)
P_apc *apcptr;

Suspends an APC pointed to by apcptr. Returns PJUNSUCC in the case of an error, PSUCC

otherwise.

3.1.3. P-resume0 command
int
P_resume(apcptr)
P_apc *apcyptr;

Resumes an APC pointed to by apc..ptr. Returns P_UNSUCC in the case of an error, SUCC

otherwise.

21

3.1.4. P-MiUO command
int
P-kill (apcptr)
P_apc *apcptr;

Terminates an APC pointed to by apc.ptr. Returns PUNSUCC in the case of an error, P_SUCC

otherwise.

3.1.5. P-joino command
int
P_join(apc_ptr)
P_apc *apcptr;

Attempts to join an APC pointed to by apcptr. Returns P_UNSUCC in the case of an error,

otherwise it returns the value of the P..exit0 call in the joined APC. The call is nonblocking and the

User is responsible for retries in the case of a failure.

3.1.6. P-signal0 command
int
P_signal (apc_ptr, signal)
P_apc *apc ptr;
int signal;

Send the signal to the APC pointed to by apcjptr. Returns PUNSUCC in the case of an error,

P_SUCC otherwise.

3.1.7. P-getapc0 command
P apc *
P_getapc(node, group, name)
int node;
int group;
char *name;

Obtains an APC record for an APC in node, associated with group and having name. Returns a

pointer the APC record, or P_NOAPC in the case of a failure.

3.2. MC - Monitoring Controller
The MC implements commands needed to control the MA (monitor attachment) of each APC in the

PNDE. The available commands are:

22

3.2.1. P._setqueue0 command
int
Paset_queue(apcjptr, size)
P_apc *apc_ptr;
int size;

Sets the monitoring queue of the APC designated by apc..ptr to the specified size. Size defines the

number of event records that fit in the queue. If the size is made smaller than the number of event

records currently resident in the queue, the queue will be flushed prior to resizing. Returns

P_LUNSUCC if the case of an error,P_SUCC otherwise.

3.2.2. Pjflush0 command
int
P_flush(apc ptr)
P_apc *apc__ptr

Flushes the content of a monitoring queue in an APC designated by the pointer apc ptr.

3.2.3. P_.,setsensor() command
int
P set sensor(apcptr, sens id, action, value)
P-_apc *apcptr;
int sensid;
int action, value;

Sets a field of a sensor control block. The block is indexed by a sens-id in the APC attachment

pointed to by apc-ptr. Action defines the field to be set to the value:

e 1 - enable

* 2 - status

e 3 - prolog-base

o 4 - actbase

* 5 - epilogxe.base

* 6 - adds subordinate

* 7 - removes subordinates

* 8 - removes all subordinates

* 9 - adds a fault target

o 10 - removes a fault target

* 11 - removes all fault targets

Returns P_UNSUCC in the case of an error,P._SUCC otherwise.

23

3.3. FIC - Fault Injection Controller
The FIC communicates with the FIA (fault injection attachment) of an APC in order to

dynamically change the characteristics of the fault profile in that FIA. The main difference between

the MC and FIC lies in the fact that the size of a monitor profile is fixed at compilation time while

the size of the fault profile can be changed dynamically during the execution of an experiment. This

is done by directing the FIC to add, alter or remove some fault control blocks. (The list of sensor

control blocks is static; this means that the monitor profile can only be changed by the MM.)

3.3.1. PJault_remove0 command
P_fault remove (apc_ptr, fault_id)
P_apc *apc_ptr;
int faultid;

Removes fault referenced by the faultid from the APC referenced by apc.ptr. Returns

PJNSUCC in the case of an error, PSUCC otherwise.

3.3.2. P-set-fault() command
int
P set fault(apcytr, faultid, action, value)
P-apc *apc.ptr;
int faultid;
int action, value;

Sets a field of a fault control block indexed by a faultjid in an APC attachment pointed to by

apc-ptr to the value value. Action defines the field to be set:

* 1 - start

. 2 - len

* 3 - mask 16

* 4 - original
17

* 5 - function

* 6 - repetition

Returns P._UNSUCC in the case of an error, PSUCC otherwise. Note: if the fault profile is not

full, a new fault can be added by setting all the elements of an empty fault control block.

'OValue represents a pointer to the mask to be used.

1TSame as for mask.

24

3.4. DCC - Data collection controller
In order to minimize execution overhead as much as possible, a decision was made to restrict all

filtering to two phase points: the period prior to event notification and/or to the period after the

completion of data collection (all data stored in PWS integration platform). Consequently the
functionality of the DCC is quite straightforward; there are only two DCC commands and they deal

with the LRF (local repository file) of an APC.

3.4.1. Pcoflect0 command
int
P collect(apcptr, file)
P_apc *apcptr;
char *file;

This command transfers the content of the LRF of the APC pointed to by apcptr to the file named

file.

3.4.2. P-getyvers0 command
int
P_get_ves (apcPtr)
P_apc *apc_ptr;

Returns the current version of the APC related LRF, or P._UNSUCC in a case of an error.

3.5. Miscellaneous PMC Functions
Here several functions, which are not directly connected with any of the attachments but deal

with general PMC functions, are described.

3.5.1. P initializeO command
int
P init'i. ize (node)
i;t node;

Initializes all PMC internal data structures and kills all active APCs that the PMC controls.

3.5.2. P..get time0 command
struct P timeval *

P_get_t ime (node)
int node;

Returns the local time of a node.

25

4. PEM - Paradise Experiment Manager

The Paradise Experiment Manager (PEM) exports a set of abstractions to Users. It also allows

Users to apply various operations on these abstractions by means of the mechanisms implemented in

the Paradise controllers and the corresponding APC attachments within each PNODE.

4.1. PEM Abstractions
Paradise abstractions, as well as Paradise mechanisms, are grouped into four categories along the

lines of associated functionality. They are hierarchically structured and supported by corresponding

managers. PEM is at the top of the hierarchy. It supports the abstraction of an experiment. PEM

supports three basic operations for starting, stopping and saving the results of an experiment in the

integration platform which is a Paradise database 8 .

In order to start an experiment, a User must provide PEM with the the following types of

information:

* description of the workload to be run

* description of all observable points in the workload

" description of all the faults to be injected

" description of the type of data to be collected

Based on these previous statements, one can claim that a Paradise experiment is uniquely defined

by four different abstractions, each supported by its own manager:

* Workload

* Monitor profile

* Fault Injection profile

" Experiment Data

4.1.1. WM - Workload Manager Abstractions
The Workload Manager related abstraction is called a workload. It is defined as a set of real-time

natural or synthetic clienta (i.e. APCs) communicating via Cronus objects. It is assumed that object

operations are implemented by sending and receiving messages. Although these messages are not

visible to a Cronus client programmer, Paradise also supports an abstraction called a link which is a

logical peer for message exchanges in an APC. The purpose of the link is to provide a hook to support

the IPC based fault injection in the User's namespace.

A workload is defined by four paramneters:

e The first parameter is the name of a special executable APC. This APC is called the
startup application client, or SAPC. The SAPC is defined by the User and is used to

183eo Chapter 5 for details.

26

create the actual clients which constitute a particular workload.

" The second parameter is an (argc, argv) pair to be submitted to the SAPC.

" The third parameter is the Paradise environment to be submitted to the SAPC.

* The fourth parameter is the description of the Paradise virtual machine to run the
workload.

4.1.2. Monitoring Manager Abstractions
The Monitoring Manager supports three different abstractions:

" Monitor profile

* Sensors

" Events

A monitor profileis a table which specifies the association between various system or User

sensors and the ids and types of event records produced. A sensor is an implant placed in an APC by

the User or by the Paradise system (i.e. PPROC). For example, in Figure 2-7b, there are two sensors

to monitor the entry and the exit of procedurel. The monitor profile for this particular example will

contain the record that the User known entity called procedurel (in the User name space) is

associated with two sensors, one of the type PPROCENTRY and another of the type

PPROCEXIT. It will also keep a record that these two sensors are named idXx (in the run-time

name space). The sensors just described are called system sensors due to the fact that they are

automatically inserted by the PPROC. However, a User may add any number of his own sensors in

order to track values of certain variables, or track executions of arbitrary parts in an APC's control

flow.

All types of User sensors, when active, create an event record. This event record has a fixed part

and also, in a case of User sensors, a variable one. The fixed part of an event record contains the

sensor type and id as well as a timestamp. The content of the variable part of an event record

depends upon the type of sensor which created it.

4.1.2.1. User Sensors
There are four different types of User se,1sors:

" Trace type - is used to notify ta .t execution reached a specified point in an APC control
flow. It will create an event with an empty variable part.

" Integer type - is used to notify the User about the value of an integer variable.

" Float type - is used to notify the User about the value of a float variable. The variable
part of the event record it generates contains that value.

" String type - is used to notify the User about the content of some string variable. The
variable part of the sensor record contains the string in "Pascal notation" (i.e.
size,content). The maximal length of such a sting is 255 bytes + 1 byte for length.

A User sensor appears in source code as:

27

P_Usensor(typ., id, val.ytr);

where oal.ptr is a pointer to a variable or is P_NULL in the case of a trace type sensor.

4.1.2.2. System Sensors
Paradise system sensors are implanted into an APC source by the PPROC. System sensor event

records have only a fixed part which includes an id, type and a timestamp. There are 11 types of

system sensors implemented in the Paradise system, but there are no design limitations to

increasing this number. A system sensor appears in source code as 19:

P sensor (type, id);

where the type can be as follows:

" PAPCSTART - start of an APC

" P _APCEND - end of an APC

* PLOOPTOP - top of a loop 20

" P LOOPBOTTOM - bottom of a loop

" P.LOOPBREAK - break from a loop

" P_LOOPCONT - continue in a loop

" P LABEL - execution reached a label

" P_-ROCENTRY - entry into a procedure

• P_PROCEXIT - exit from a procedure

" P.OBJENTRY - entry into an object operation call

" POBJEXIT - exit from an object operation call

" P_OPRBEGIN - manager operation code begin

" POPREND - manager operation code end

4.1.3. Fault Injection Manager Abstractions
The FIM supports the following set of abstractions:

o faults

* fault int .. ces

" fault occurrences

" fault classes

" fault profile

A fault is an abnormal event in a computer or in the network connecting the computer to the rest

9Please also see Figure 2-7b and Appendix Figure I[.3.1.3

20he term loop here referm to: while, for, or do loops.

28

of a system. It is represented by a physical/logical fault instance. A happening of a fault is a fault

occurrence defined by a fault instance which occurs in a certain part of a system (i.e. specific
PNODE or network) at a certain time.

Typical Client's Address Space

Procl Proc2 ProcN Datal Data2 DataN

Client Attachment- Fault Injector

Figure 4-1: Memory Fault Class

Typical Client's Registers

Ri R2 R3 IP SP FP

OS System Call- Fault Injector

Figure 4-2: Register Fault Class

A fault class is a group of fault occurrences with a common denominator. It is a template

describing a set of workload/Cronus/HostOS modifications -- actually, corruptions --- which are

representative of a group of physical and/or logical faults. Figures 4-1 and 4-2 present two examples:

memory and register fault classes, respectively.

A fault profileis a table which specifies the association between various system or User sensors

and the fault occurrences in an APC (See Section 2.2.2).

29

Fault
Instance

Virtual Address Space of Client I

Virtual Address Space of Client K

F. OaW" Em. irewn

5~b0... "yI 10 S1.1. yk&312

MeuN.I FaN .Ift Gbl ASOF12 0 w
F.t. f AEEF12 AND

Figure 4-3: Components of a Fault Instance

Figure 4-3 shows the components of a fault instance. It specifies the PNODE in which fault

injection is to take place and the APC which is to be affected. It also specifies: an APC element, the

position in this element as well as the mask and function to be used.

4.1.4. Data Collection Manager Abstractions
The DCM supports the following abstractions:

" Events

" Local Repository Files (LRFs)

An event is a happening of some predefined kind. An event in Paradise can be observable or

nonobservable. Observable events can be active or passive at some time during the execution of

an experiment. In this design the observability of an event can be changed on a static basis (i.e. at

compilation time) while the activity of an event can be changed on a dynamic basis (i.e. at execution

time).

Active events generate an event reco-d. For performance reasons sensors store event records in a

format determined by the machine acting as the execution engine. As a result it is the task of the

data collection mechanisms to deliver them to the PWS in the the standard Paradise format.

Event records generated by sensors in an APC are stored in a local repository file, or LRF.

There is an LRF for each APC in a workload. The data format of the event records in a LRF at this

point depends on the CPU and host OS type of the PNODE it resides in. For this reason each LRF

carries an identification of these types so that the DCM can correctly interpret the event records.

Typically, an APC creates a LRF upon startup and closes it upon exiting. However, there are

situations where an APC runs for a long time (or even permandntly). In such situations the User can

30

close the current version of an LRF and redirect future event records to a new version. The old LRF
is then available be used for data analysis even though the APC is still executing.

4.2. PEM Commands
The Paradise Experiment Manager (PEM) interprets an experiment script during the execution of

an experiment. There are different groups of PEM commands; some of them deal with the control
flow of an experiment while others invoke various functions in the PMC controllers located in each

PNODE.

4.2.1. General Experiment Manager Commands
All commands in the general PEM group are not specifically associated with any of the PMC

controllers but are either executed in the PWS locally or invoke miscellaneous PMC functions.

The PEM supports experiment script string variables with arbitrary names. Due to the fact that

the PEM experiment script interpreter is an APC, it consequently supports its own Paradise

environment. A workload inherits the environment of the script interpreter. Environment variables

are distinguished from other variables by having '%' as the first character in a name. Despite the fact

that the script variables are kept in interpreter working memory as strings, arithmetic operators

such as: '', '+', '-', '*' and T' can be used. If operands are integers in ASCII format, then the result

will also be an integer in ASCII format. Otherwise the PEM interpreter will stop and an error will be

displayed. The PEM script interpreter also supports a standard set of relational operators such as:
>1, 9'>', '<=', '<', 'm' and 'In'. Variables are allocated the first time they appear on the left side of an

expression.

The experiment script interpreter supports the notion of a device. A device is a Cronus object

which is used to transfer data from the interpreter to different tools on a dynamic basis (i.e. for the

dynamic graphs and other mostly graphical representations.) Devices are referenced via device

script variables which have names that always s~art with '$'.

4.2.1.1. Experimentstart0 command
experiment_start(exp_id, vorkload, fiprof, data)

The experiment.start command begins the execution of an experiment. It initializes all the

involved PMCs and transfers the executables specified in the workload file to the appropriate

PNODEs. It also transfers all the appropriate monitor fault profiles from the PWS to the target

PNODEs. In case of an execution error, PEM will stop the execution of an experiment script and

return to the menu mode.211f the integration platform isn't aware of the experiment id used, it will

"Tli command will also perform timing synchronization if the host OS does not export a synchronized clock to the local

network.

31

create a new entry in the platform's list of the experiments. Data is a name of a file that holds the

input data for the experiment. This file will be transferred to the PNODE where the SAPC is to be

executed.

4.2.1.2. Experiment_end0 Command
experimentend (expid)

This command terminates an experiment. During this operation it will initialize all PMCs that

were involved in the experiment. It will also reboot PNODEs if necessary (i.e. if they were left in a

corrupted system state after the experiment termination). After this housekeeping is completed,

PEM verifies that all monitored data is collected and stored into the integration platform identified

as the experiment data for that particular experiment id.

4.2.1.3. Wait() command
wait(time, event)

The PEM experiment script interpreter waits for the expiration of the time interval or the arrival

of the event notification, whichever comes first. Using P-NOTME for either the time or event variable

forces the interpreter to wait for another alternative.

4.2.1.4. For() - Endfor0 command pair
for(prologue; condition; adjustment)

endfor ()

The for-endfor command pair delimits a program loop in a Paradise script. Prologue, condition

and adjustment are regular expressions specifying the start and end conditions as well as the

adjustment at the end of each iteration. This syntax is simila- to the for command in the C

language.

4.2.1.5. If() - Elseif0 - Endif0 commands

32

if (condition)

eLseif ()

endif ()

These commands have the same functionality as if-else commands in C. Elseif can be omitted if

not needed.

4.2.1.6. Time() command
time (node, rtime, ltime);

Returns the local time (rtime) of a remote node and the local time (Itime) of the PWS. This

command assumes that, in order to obtain time from another PNODE, two messages (to/from)have to

be sent. It also assumes that the propagation time for both messages are the same and, therefore,

that the remote PNODE reads its time in the middle of the period delimited by sending the request

and receiving the answer. During the execution of the time command, the whole process is repeated

three times and the mean value is used to produce the final result. The difference between rtime and

Itime can be used to modify all data on timing from a remote node. 22

4.2.1.7. DeviceO command
device (&mydevice)

Create a new device and make the variable &mydevice a pointer to a new device.

4.2.1.8. Get_word0 command

get word(dev, word)

Obtains the next word from the device dev and puts it in the variable word. A word is defined as a

part of a bytestream delimited by one or more blanks at the beginning and at the end.

22
1f global time is not exported by the host OS , this command can be used during lengthy experiments to keep the local

clocks synchronized. For an example, see section 6.2.3.

33

4.2.1.9. Putword0 command
Putword(dev, word)

Takes the next word from the variable word and puts it on device dev.

4.2.2. Workload Manager Commands
The Workload Manager takes care of the creation and termination of a workload. A workload is

defined by the executable of its SAPC, its input parameters, and a Paradise environment string.

4.2.2.1. Set-env0 - Get-.env0 commands
set env(var, val)

get env(var, val)

Sets the content of an environment variable var to val, or gets the content of that variable and

stores it into val. SAPC inherits the environment.

4.2.2.2. Workload_.start0 command
workload start(papc, argc, argv, machine)

Start a SAPC with argc/argv as the arguments in the root node of the virtual machine defined by
machine file. It is assumed that, in a typical experiment, the User will run a workload in only a

subset of the available PNODES. This subset is described by a list of PNODE names constituting the
Paradise virtual machine for the particular experiment. Upon the start of a workload, nodes from
the list form a virtual tree, thus allowing for workload commands such as: suspend, resume or kill to

take time proportional to log(n) where n represents the number of nodes in the virtual machine.

4.2.2.3. Workload_,suspend() - command
workloadsuspend ()

Finds all the PNODES that constitute a Paradise virtual machine for a specific w-,iload and

suspends all the APCs that are associated with that workload.

4.2.2.4. Workload resume0 - command
workloadresume ()

Finds all the PNODES that constitute a Paradise virtual machine for a specific workload and
resumes all the APCs that are associated with that workload.

34

4.2.2.5. Workload-killo - command
workload-kill()

Finds all the PNODES that constitute a Paradise virtual machine for a specific workload and kills
all the APCs that are associated with that workload.

4.2.3. Monitoring Manager Commands
The Monitoring Manager deals with the monitor profiles. Each APC reads its own monitor profile

at the time of initialization. After that, characteristics of the monitoring system can be changed

dynamically from the experiment script. This is done by the changemon.profile0 command.

4.2.3.1. Change mon-profile0 command
changemonprofile (old_profile, new-Profile)

Both profiles are analyzed and changes are sent to the proper PNODES.

4.2.4. Fault Injection Manager Commands
The FI Manager deals with the fault profiles. Each APC reads its own fault profile at the time of

initialization. After that, characteristics of the fault injection systems can be changed dynamically

from the experiment script. This is done by the changefiprofile0 command.

4.2.4.1. Changeiprofile0 command
change_fiprofile (oldprofile, newprofile)

Both profiles are analyzed and changes are sent to the proper PNODES.

4.2.5. Data Collection Manager Commands
Data collection mechanisms in Paradise have only one very important task, i.e. to transport event

records irom LRFs to PWS where they can be merged and stored in the integration platform. For

reasons of performance efficiency, underlying data collection mechanisms are highly dependent on

the Host OS and the hardware types.

4.2.5.1. CollectO command
collect (node, apc)

Collects monitoring data from the PNODE node. If apc is nonempty, the string data will be

collected for the APC with the name equal to this string. Otherwise, data for all the APCs in the

node will be collected and stored in PWS. If node is negative, data for all the PNODES in the virtual

35

machine will be collected 23.

2 3
1f the collect() command is executed while the workload is still running, new versions of LRFs will be generated to allow

for undisturbed monitoring.

36

5. Paradise Tools
On top of the mechanisms described in the previous text, Paradise supports a set of policies and a

related set of automated tools to implement these policies. In order to have a better understanding

of how various Paradise tools are used, let us first develop an overview of the control and data flows

for the Paradise/Cronus experiment preparation, execution, and data analysis phases. These three

phases are depicted in Figure 5-1.

F Faultclasses

Compile Eprmndecito

speciied o thatsourc. Thesenso profl informatioo parrfohsfeeopetiieinomain

Pardie rahicl ntrfcePARASCOPE.w At ths o O Sintrmnsteouccdeb

06o'a ,anso o + CA .o

inetn heslce Paradisesrs itoit an gnraea Senorrofle fl.Teeaerfre

toAo
AM Moasp Pfilee

Figure 5-1: Paradise Control and Data Flow

There arthe r major User inputs to the experimentation process:

" C or Cronus source codes
" Fault classes

" Experiment description

In Paradise, source code represents definitions of either application clients (SAPC, APCs) written

in the C language, or the C code used to describe operations of object managers (APMs) prepared in

the Cronus su., 4ard form. Each source code entity is processed first by the Paradise preprocessor

(PPROC) -,-'.ch extracts the development time information about the particular APC or APM

specified Dy that source. The sensor profile information is part of this development time information.

This data is placed in the Integration Platform for future reference or use by other tools. Using this

information, the User instruments the code by selecting, the sensors to be installed by means of the

Paradise graphical interface PARASCOPE. At this point PPROC instruments the source code by

inserting the selected Paradise sensors into it, and generates a Sensor Profile file. These are referred

to as .sp files.

After the work of PPROC is done, the resulting output is processed by the C compiler. Here the

Cronus and Paradise Attachment libraries are linked in.

37

The object file thus generated is then passed through the Paradise Postprocessor (POPROC)
which extracts the element profile information, and generates an Element Profile file and saves the
required access information in the Integration Platform. These are referred to as .ep files.

Each of the developed APCs and the associated .sp and .ep are saved in the workload library for

use at a later time.24

There are two sources of fault classes for an experiment. Either the User defines the experiment

specific fault classes or reuses some from the fault library. It is again our experience that the
number of practical fault classes (for a particular architecture and workload) is not extensive.
Therefore, after the system is used over a period of time, most of the usually required fault classes

will have been installed in the fault library.

The Fault Instance Generator (FIG) takes the description of a fault class and produces a number

of fault instances to be applied to the particular workload. In order to do this, the FIG has to have
knowledge about the element profiles of all the APCs that constitute a workload. FIG also has to
have knowledge about their sensor profiles due to the fact that, in Paradise, faults are triggered by

the sensors.

The generated fault instances are placed into Fault Lists according to the APMs and APCs
affected. The information from the respective Sensor Profile and FaultList is used to generate a
Monitor Fault Profile (MFP) for each APM/APC to be observed and/or fault injected in the workload.

Once a workload is generated and all fault instances needed for fault injection are produced, one

has to describe the desired experiments to the Paradise system so that the experimentation process

can be conducted automatically. An Experiment Definition is compiled by the Experiment Definition

Compiler (EDC) to produce an Experiment Script. This Experiment Script is then interpreted by the
Runtime Experiment Controller (REC) in order to execute the workload.

The REC issues commands to the PMC in each PNode in order to:
* Start the workload and synchronize its APCs

" Monitor its execution

" Fault inject

" Collect and save and/or present monitoring data

* Terminate the workload

Results extracted from the data collected during the run time of a workload are stored in a
relational database which serves as an Integration Platform (IP), as depicted in Figure 5-2. In

addition to an available set of preprogrammed interfaces and various development tools, the IP is

24Also it is our experience that many of the modules, especially those dealing with i/o or custom measurements, are often
reused in practice.

38

dbs

Query Experiment Analyze Experiment
Database Database
(Integration Platform) (Integration Platform)

I I User Interaction

Figure 5-2: Paradise Integration Platform

supplied with a general query interface so Users can also build their own customized tools.

Experiment Interface
I I I

Library Experiment Experiment Data
Preparation Definition Execution Analysis
I I I -I

Workload Fault Expr Expr Develop.
Librarian Librarian Dec Script Views

Analyze Query RunTime.
Experiment Experiment Views

Client Workload Domain Method Fault Database Database
Dev DeIn DeIn Dev Class

Client Client Ciient Method Method Run Single Multiple
Deln Image Attr Defn Image Analysis Experiment Experiment

GAn Cm C,, Analysis Analysis

Figx, j 5-3: Paradise Menu Structure

Due to the fact that multiple passes throtigh the control flow of the experimentation process are

possible, Paradise exports a set of menus at the User interface level. The structure of the Paradise

menus is shown in Figure 5-3. This arrangement permits the User to conveniently enter or re-enter

any of the various development steps simply by traversing the menu tree. The use of menus also

enforces Paradise administrative procedures in the experimental environment.

A typical pass through the Paradise experiment control flow is shown in Figure 5-4. The User first

develops all the necessary clients. Then the workload is defined and its description stored in the

workload library. After this is done, first a fault free' experiment is performed and the behavior of

39

with FI Jj w ith_ F I with Fl J

Figure 5-4: Flow of an Experiment

the worload is determined and anayzed. This part of the experiment is important due to the fact

that in some cases fault injection will result in reduced system performance rather than an outright

corrupted functionality. 25 Typically, after the fault free behavior is carefully analyzed, a new set of

experiments involving fault injection is prepared and executed. It is important to note that the User

can return from almost any point in the experiment control flow to another point in order to refine or

Library Preparation Exp Definition Exp Execution Data Analysis

t t i n sP
e r fo rm a n c e

corrup e Dun c ripion 2 Ty i al ycat r ip aut fr e b h v o s c r f l y a a y e ,a n w s t o

o WL Manager o Exp Des Manager o Exp Manager o Data Analysis

o Faut Mainger
o Data Cal Manager

Figre 5-5: Typical Monitoring and Fault Injection Experiment

redefine the experiment.

The control and data flow for a typical monitoring and fault injection experiment is depicted in

2SThe fault free experiment provides the reference basis to detect reduced performance.

40

Figure 5-5. All four major phases of an experiment are described in this diagram. These are:

* Library preparation

" Experiment definition

" Experiment execution

" Data analysis

Each of these phases and the associated tools are now discussed.

5.1. Library Preparation
As shown in Figure 5-1, there are two important libraries involved in the Paradise

experimentation process:
* Workload library

" Fault library

In order to provide for the management of these libraries, the Paradise system includes two

Librarians, the Workload Librarian and the Fault Librarian.

5.1.1. Workload Librarian
The Workload Librarian provides tools for the management of the workload library. It supports

three main activities:
* APC development

* APM development

" Workload definition development

In addition to an enhanced editor, the Workload Librarian consists of the following tools:

* PPROC

* PARAMAP

* WLGEN

* POPROC

Development of a client begins with the editing of the APC ,r APM source code. After editing, the

User invokes the PPROC tool in order to instrument the particular object described by the edited

source code and to extract the sensor profile information.

5.1.1.1. Paradise Preprocessor - PPROC
The Paradise preprocessor reads in a specification of an APC or an APM. It has built in

knowledge about the syntax of the input. It also has some limited knowledge about the semantics of

the input due to the fact that it recognizes some high level abstractions (i.e. data object operations,

etc.). The PPROC can be customized in order to accommodate for various semantic entities

dependent upon the specific engineering environment in which it is used. Based on its input, the

41

PPROC will produce a *.pif file which contains an internal description of a given APC/APM in

Paradise intermediate form. The pointers to these files are stored in the IP and are used by other

Paradise tools to increase productivity by avoiding repetitive parsing of the same source.

5.1.1.2. Paradise Roadmap - PARAMAP
The Paradise "roadmap", or PARAMAP, is a member of a set of graphical tools collectively called

PARASCOPE. PARAMAP presents the User with a graphical view of the observable structure of an

APC/APM. PARAMAP reads a .pif file, if it exists, and outputs the structure in the form of an

oriented graph. If the .pif file doesn't exist for an APC/APM, PARAMAP will invoke PPROC and

produce one before generating the graphical representation. The same will happen if an .pif file is

out of date with respect to its source counterpart. These types of actions are part of the Paradise

responsibility to maintain a consistent system.
Module: I Program: multiply.c View: Paramap

Data
Extract

~ psnati~2gnGECOL~~rOLOZHelp

Plot

CE] forQuit
Refresh
Views
Window

E for IZoom

. / - s 1mat rix2 genGETROWAU

Figure 5-6: PARAMAP view of a matrix multiplication APC

The structure of such a PARAMAP graph, as shown in Figure 5-6, illustrates the nesting of the

various syntactic program constr,-"s that form an APC/APM such as for-loops, while-loops,

functions, and so on. PARAMAP maintains a reference link with the original source code via the IP

so that the User can backtrack and connect various graph nodes with their corresponding source

representation, and vice versa. This is done by selecting either construct with a mouse pointer; this

causes its counterpart to be highlighted in the other window. 2 6 There is virtually no limit on a

number of text editor and PARAMAP windows that can be simultaneously displayed on a screen, so

the User can navigate through several workload APCs/APMs at the same time.

"As an example, if the User "clicks" in a PARASCOPE graph node representing an data object operation call, the cursor in
the text editor window will move to the beginning of the line which contains the source code for that call.

42

By using the available PARAMAP menus the User can manipulate the graphical representation in

order to vary its expressiveness (i.e. the User can trim, zoom, etc). PARAMAP includes commands

which can make an individual and/or a subset of existing APC/APM constructs observable.

PARAMAP prodaces a sensor profile which is a list of sensors needed to make observable source

level constructs visible.

Upon demand, if any of input specifications (ie. an input source2 7 or a .pif file) has been changed,

PARAMAP produces an output source with the system and User sensors inserted.

In the next step PARAMAP produces a sensor profile for the APC or APM it is processing. A

sensor profile is a list of descriptions for each of the sensors manually or automatically inserted into

the code. Sensors inserted into the code at various locations in its control flow make these points

(i.e. events associated with an execution reaching these points) observable. There is an id and a type

description associated with each sensor entry in the sensor profile. PARAMAP saves the pointer to

the sensor profile in the IP so that it can be retrieved and altered if the related APC/APM is revisited

at a later time.

PARAMAP outputs are *.sp and *.c or *.typedef file types depending on whether the input file was

an APC (*.pc) or an APM (*.ptypedef) description, respectively.

5.1.1.3. Paradise Workload Generator - WLGEN
For each workload the User defines a *.wld file which contains an SAPC and a list of the objects

which constitute the workload. The SAPC and each module definition consists of a module name

and a list of the PNodes in which this module will be used during the workload execution. Given a

module name, all files associated with this name (input, output and intermediates) will have the

same name but with different extensions.28 WLGEN uses a *.wld file to produce all the objects

needed to run the workload, and to transfer and maintain them in all the nodes where they will be

needed. This means that at times, especially in a heterogeneous environment, WLGEN will have to

start the parallel compilation of sources in different nodes or it will have to distribute copies of an

object. In order to produce the objects (*.o files) for all the APCs/APMs that constitute a workload,

WLGEN uses the standard C compilers available in each PNode.

After all the objects have been created, WLGEN will run the Paradise POPROC o- anem.

27A *.ptypedef file in a case of an APM or a *.pc file in a case ofan APC file

2 8For the APC caled "grinder" the source file will be grinder.pe, the Paradise intermediate form will be grinder.pif, the
sensor profile will be grinder.sp and instrumented code will be grinder.c.

43

5.1.1.4. Paradise Postprocessor - POPROC
POPROC is a tool that accepts Paradise APC/APM workload objects and links them into

executables. After this, it extracts the element profiles. POPROC deposits these profiles in *.ep
files. An element profile is a list of local data and code elements that constitute an executable. Each

of the elements are characterized by its source level name, its virtual address in the executable
address space, and its size in bytes. Element profiles are used to generate fault instances in

conjunction with fault classes.

5.1.1.5. The Paradise Workload Library
The workload library is organized in a hierarchical manner. Each of the sources, objects, and

various profiles or workload description files are stored in separate sublibraries.

Data object development in Cronus yields an executable for the object manager and a library of

operation functions to be performed on an object. This library is also managed by the Workload
Librarian so that all the locations where an APC references an object can be properly instrumented.

The Workload Librarian also maintains a library of workload descriptions (i.e *. wld files described in

Section 5.1.1.3). The Paradise Workload Librarian may be used by the Paradise User to insert/delete
various workload components, but its main function is to support the operation of various tools

accessing or generating workload components in any of the various development phases.

5.1.2. Fault Librarian
The Fault Librarian maintains three sublibraries:

" fault class library

" fault method library

" fault domain library.

The fault class library holds a set of fault class descriptions, while the fault domain library holds

the lists of domains that form a general set of system and User-specified domains. Methods are

executable files and are maintained in a similar manner to workload executables.

Note: Please keep in mind that the fault domains, in general, are workload deptadent since they

depend upon specific PNodes, APMs, APCs, elements, anO io on. This information, as described

earlier, is maintained by the Workload Librarian. The Fault Librarian has access to these domains

also.

There are other types of domains which are not workload specific per se, such as collections of

special masks, and the list of possible operations by applying the masks (i.e. AND, OR, MOVE, etc.).
The Fault Librarian is used to maintain such domains so that they are available to other tools and

multiple Users. These are referred to as system domains. Also, the User may wish to define some

special domain(s) for a workload. These ere referred to as User-specifiw domains. The Fault

Librarian supports these types of domains also.

44

5.1.2.1. Paradise Fault Class Generator - FCGEN
The User generates new fault classes by using the Paradise fault class generator tool FCGEN.

FCGEN is based on an advanced editor which knows about the format of the Fault Class Definition

file (*.fcd). This file consists of a list of tuples in the form (domain, method) where the second

element is an executable file name. A method can be any Cronus executable that accepts the list of

domain files and a name of an output file as its input parameters. The sole role of a method is to

read the domains from a workload description named "workload" and form a new tuple which

consists of domain members. When finished, the method appends its result to the content of the

submitted output file.

Domains are lists of elements that represent categories in the workload description file. Typical

examples are node names, names of APCs/APMs, element profiles or sensor profiles. Element and

sensor profiles are further subdivided into categories such as: data, instructions, and the various

sensor types. The set of domain types for a workload in the Paradise system is is rather fixed due to

the fact that domains are directly related to the internal design of Paradise itself.

Paradise supplies the User with a library of functions to access these domains. Using these

library functions, the User can easily prepare methods since the actual names and locations of the

domain information is not needed to be known by the User. Since the User works within the context

of a certain experiment and a certain workload, all domain information is implicitly named. The

Paradise administrative operations are abstracted out. The User needs only to specify the type of

domain information, and the library functions perform the actual extraction. Below is a

representative list of these functions:

" Node list functions:

. p-getnode(index,fp) - returns the node id for a node in the position pointed to by
index in the node list of a *.wld file. fp is a pointer to an open *.wld file.

- pgetnum nodes(fp) - returns the number of nodes in the node list of a workload
description pointed to by fp.

* APM list functions:
* p-get-apm(indexfp) - returns the APM id for an APM in the position pointed to by

index in the APM list of a *. wld file. fp is a pointer to an open *. wid file.

" pget.numapms(fp) - returns the number of APMs in the APM list of a workload
description pointed to by fp.

• APC list functions:

" pgetapc(index,fp) - returns an APC id for an APC in position pointed to by index
in the APM list of a *.wld file. fp is a pointer to an open *.wld file.

" p-get.num-apcs(fp) - returns the number of APCs in the APC list of a workload
description pointed to by fp.

" Sensor Profile functions:

* pget-sens(index.type,fp) - returns true or false depending if the sensor in position
pointed to by index .in a sensor profile is of the specified type. fp is a pointer to an
open sensor profile file. Type is a pointer to a mask of type flags so the User can
select to deal only with a certain subset of all possible sensor types (i.e. the User

45

can look into loop and procedure call sensors only, etc.)
* p.get.numsens(fp) - return the number of sensors in the sensor profile pointed to

by fp.

* Element Profile functions:

Sp..getelem(index, type,fp) - returns the starting address and the size of an element
pointed to by index in an element profile. fp is a pointer to an open element profile
file. Type is a pointer to a mask of type flags so the User can select to deal only
with a subset of all possible element types (i.e. the User can look into data or code
elements only).

" p-getnumelem(fp) - returns the number of elements in an element profile
pointed to byfp.

There is no limitation on the number or type of methods that can be created due to the fact that
they are individual programs written by Paradise Users. As experience has shown, a basic set of

methods will evolve as more and more experiments are developed on the system. These can be made

generally accessible in the form of a library of standard methods.

More so, the User can use already existing methods to form more complex ones. As an example,

Paradise will supply methods which select an element from a domain by choosing different random

distribution functions. One can easily envision a User combining several such methods to obtain
more complex random tuples. The default Paradise method is called Interactive. This methods

prompts the User to make a choice from a displayed domain list.

5.1.2.2. Paradise Fault List Generator. FLGEN
The role of the Paradise Fault List Generator is to take a fault class description file (*.fcd) and a

workload description file (*.wld) and produce a Fault List (*.fl) file. The User can optionally name

the *.fl tle or the workload id prefix is used as a default (the extension .fl remains the same).

Sensor
Profile_

Monitor/ Monitor/
Element Fault seuec ofPrfl JProfile Profile

Fault Class I 1W Generator

Defini tion J -I

be injected in a
o Memory Faults sequence of

o Register Faults experiments
o Communication Faults
o Error Detecti6n Mech Triggering

Figure 5-7: Paradise Fault Libra:ian

46

The Fault List is a list of fault instances which are used to construct a Monitor Fault Profile

(MFP). The process of generating fault lists is depicted in Figure 5-7. They are generated by the

Paradise Fault list generator FLGEN.

FLGEN reads a fault class description and uses the workload description in order to fork off the

specified methods and produce a list of fault instances.

As part of the Paradise design philosophy, a Fault Free experiment (i.e. monitoring only) is a

special case which utilizes only null fault lists.

5.1.2.3. The Paradise Fault Library
The Fault Library is organized in a hierarchical manner. Each of the developed fault class

definitions, domains, and methods are stored in separate sublibraries.

The Paradise Fault Librarian may be used by the Paradise User to insert/delete fault class

definitions and various User defined domains and methods, but its main function is to support the

operation of the various tools involved in the production and administration of fault lists.

5.2. Experiment Definition
The User provides Paradise with a high level Experiment Definition which describes the desired

control flow of an experiment. The commands discussed in Section 4 are used to compose the

definition. As part of this description, the User must also specify the fault class definitions and the

workload definitions which have been prepared.

5.2.1. Experiment Definition Compiler - EDC
The Experiment Definition Compiler (EDC) takes these three inputs (as depicted in Figure 5-8)

and produces an Experiment Script. The script consists of appropriate PMC, Cronus, and system

commands required to set up and execute the experiment. During the process of compilation, the

EDC references the relevant workload data in the Integration Platform in order to obtain the

monitor and fault profiles and then tailor them according to the needs of the experiment. The

work:oad definition provides the necessary information to retrieve these items. Please note that the

monitor/fault profile for each APC/APM includes all of the module sensors, but they are all initially

disabled. In this phase, however, the EDC sets up the initial values for the sensor control block3 and

'also creates sensor enable commands in the script locations where a change of the monitoring

characteristics is needed. The same is true for the fault profile which, at the beginning, contains the

initial values of the fault control blocks but are not yet linked to triggering sensors. The generated

script contains the required commands to create these sensor/fault links.

In the above scenario, the basic MFP for each APC/APM is transfered to the PNode, and the

sensor and fault alterations are performed remotely. As a contrast, the example discussed in the

Appendix discusses how this is done interactively by the User at the PWS. In this case the MFP is

47

fully implemented, so no script commands are required.

The creation of an Experiment Script is facilitated with a set of available graphical tools which

can be used to pinpoint various parts of the experiment's control and data flow for the purpose of

monitoring and/or fault injection.

Experiment Preparation

Workload Library Workload Profile

Preparation

Fault Library Monitor/Fault Profli

Preparation

Experiment ExperimentExperiment escription

Definition

Experiment Script

Figure 5-8: Data Involved in Experiment Preparation

5.2.2. Experiment 110 Devices
Paradise will support not only batch but also interactive modes of experimentation. While one can

imagine that the User input to a running Paradise Experiment Script will be almost always simple

in nature, it will generally be desired to accept, process and present the output data a variety of

ways. For this reason Paradise supports the concept of 1/O devices. A Paradise device is a Cronus

object which implements five operations:

" open

" read

" write

" control

" close

While the Users can supply their own devices, there will be a set of standard devices available.

For example, one of the standard devices will be a console implemented via an X window. There

will also be a set of graphical devices presenting the views discussed in Section 5.4 below. A device

accepts a fixed format r' . put data in order to produce specified outputs. The Experiment Script

interpreter can also read and interpret certain experiment data in order to modify its control flow on

the basis of some previous results. In this way it is similar to the Unix Shell since it can perform I/O

48

and maintain state. A set of devices can be supplied to handle interfacing to the IP and the

experiment data files produced by the monitoring facility. To invoke a device, the User specifies a

device variable to an open call which in turn returns a pointer to a device control block. All

successive 1/O operations are then performed using that pointer.

5.2.3. Experiment Definition Variables
As mentioned the Experiment Definition is a high level script similar to a shell script in UNIX.

This script is interpreted during the experiment execution time. The User can define a set of script

variables with arbitrary names. All the variables are strings and contain the information in string

form. The User is supplied with a set of three address operators which perform various arithmetic

and logical operations on the script variables.

Due to its nature, the Experiment Script in Paradise is used to define the control flow of an

experiment, while the actual data processing is performed by the C code modules which implement

the device commands.

5.3. Experiment Execution
The execution of an experiment is directed by the interpretation of the experiment script by an

experiment controller.

5.3.1. Runtime Experiment Controller - REC
The Runtime Experiment Controller (REC) sends various commands to specific PNODEs in the

system. The respective PMCs in these PNODEs receive, interpret and execute these commands. As

Experiment Preparation

Experiment Execution
Paradise Experiment Manage, (PEM) PW

-ind Data Collection Manager (DCM)

control experiment tion.

tExperiment Data_

Data Analysis
Experiment Dtbs

(integ ration Pato)

Figure 5-9: Experiment Data Collection

the consequence of these commands, first, the workload SAPC is created and then the actual

49

workload APCs are created by the SAPC in turn. The SAPC terminates itself at this point. While

executing, the APCs interact via data objects. Each time an APC encounters a sensor in its control

flow, a filtering function is performed and the sensor is fired or not depending on the current content

of its sensor control block. Each time a sensor is fired, a notification flag is tested, and if true, an

event record is generated. The event records are collated by the data collection mechanisms and

ultimately stored in the IP so that data analysis can be performed. The complete process is depicted

in Figure 5-9.

5.4. Data Presentation and Analysis
The function of the data analysis part of the Paradise system is to facilitate the User's

understanding of the behavior of the system under test.

Data analysis tools in Paradise can be divided into three groups:

" Preprogrammed experiment database analysis

" Random queries into experiment database

" Specific run time views

Tools from the first group offer a predefined functionality. They access specific experiment data,

interpret it, and present the results using one of the standard graphical displays. Here are some

examples.

File: recovery.stat Min: 4.237 Max: 40.373 Avg: 20.398

40- Data
% Extractof
faults Help

Plot

30 Quit

Refres
Views
Window

20-- Zoom

10

0 I ! -I I

1 2 3 4 5 6 7 8 9 10 11

recovery time (second

Figure 5-10: Histogram Presentation of the Experiment Data

Figure 5-10 shows the output of a tool which presents data on the recovery statistics from a set of

fault injection experiments in the form of a histogram.

50

File: recover .stat Min: 4.237 Max: 40.373 Ava: 20.398
40 Data

% Ext rac
of
faults -elp

Plot

30 Quit

Refrest
--Views

Window

20 Zoom

10

0

1 2 3 4 5 6 7 8 9 10 11

recovery time (second

Figure 5-11: Graph Presentation of the Experiment Data

Figure 5-11 shows the same data plotted as a graph. Other standard outputs are: pies, boxes, bar

plots, and scatter graphs. The User has the means to change shading and type of lines and symbols.

Linear and log scales on graph axis are interchangeable as well as the scales and units.

File: recovery.stat Min: 4.237 Max: 40.373 Avg: 20.398
40-- Data

of Extract

faults Help

Plot

30" Quit

Refres

Views

Window
20- Zoom

I /'

10 1 Y Y-
1 2 3 4 5 6 7 8 9 10 11

recovery time (second

Figure 5-12: Combined Presentation of the Multiple Experiment Data

The User can choose different combinations of presentations as depicted in Figure 5-12. Paradise

tools not only provide outputs for the presentation of arithmetic relations butother types of relations

51

may be presented also.

An example is depicted in figure 5-13. It presents the APC - data object relation for the test

application presented in the feasibility study. It shows APCs from three PNODEs using data from

an object in PNODE 4. This kind of preprogrammed presentation is called a dependency graph.

Arrows represent dependencies and boxes represent objects which are related by these dependencies.

The User can change the style of objects from boxes to circles. The arrows can be single or double

directional, which represent a mutual dependency. In addition to the tools which provide a graphical

Time: 24.340 Experiment: MatMult View: Data Access
Data
Extract
Help
Plot

Pnodel Pnode2 Quit
Refremt
Views
Window

NZoom

Pnode3 Pnode4

Figure 5-13: Data Access View

output, there are also tools that cin produce alphanumeric lists and tables. The common

characteristic of all these tools is that the User specifies the data to be extracted from the database

and each tool then displays this data in one of several preprogrammed formats.

Due to the fact that all of these tools share the same data set -a the Integration Platform, one can

easily relate graphical and alphanumeric representations of th" :name data element by using a mouse

and selecting the element in question in one representati, ... If a tool is interconnected with others

then, when an element is selected, it will communicate its identification to the IP so that the other

tools currently-presenting this element will highlight it. As an example, assume a case where the

User has two views of a workload on the screen: one Data Access view as depicted in Figure 5-13

and another alphanumeric view showing the source code or one of the APCs involved. If these views

are connected, selecting the arrow in the former case would result in moving the cursor to the exact

location of an object operation call in the latter one.

The second group of tools are custom designed tools which Users can build for themselves.

Paradise provides a standard interface to the Integration Platform to facilitate the implementation

52

of such tools. This interface will be in a form of a relational query language. Paradise will also

maintain these tools in a library so they can be shared among other Users.

Time: 5.0342 Experiment: MatMu~lt View: ParaScove

Pnode 1 Data

I i it~)~I m ~.t~lvExt ract
IA.~w i~i x~.i~i w wHelp
1Aj AI II 1A L~ WUJUJ LI WPlot

Quit
Refres

inityW lli 3: 1 "11,".11 ,l 1:views

Zoom

i i oo .~~ ~~1 11 111111111111111111111111111111t1111111

i it~)) ItplPySS M)&% C: ~ j jjl joinM
I IIIII!1 W1 1 A11111 1111111 W1111 111111 111111111111tl

lFrameman M M M) MOMEN)

Collector M R M M R

Figure 5-14: PARASCOPE Dynamic View

Up to now the tools described gain their advantage from the fact that all the data and the

relations they require are stored and available in the IP. However, there are situations where the

User requires a dynamic real time, instead of post mortem, view of specific relations in the

experiment. For example, let us assume that the User wishes to monitor a part of an application

which is running continuously (i.e. 24 hours a day 356 days a year), and that all that is needed is to

obtain an occasional snapshot of the execution. In order to achieve such a mode of operation with a

tolerable level of overhead, tools should exist to allow for dynamic retrieval of event records from the

data collection mechanism. This data then, together with the relations needed from the IP, can be

directly forwarded to one of the preprogrammed presentation tools to achieve an animated dynamic

view as the one shown in Figure 5-14. The set of Paradise .ols designed to provide the data transfer

between the collection mechanisms at the run time and the .cprogrammed nresentation views is

collectively called PARASCOPE.

53

6. Paradise Feasibility Study

6.1. General
A rudimentary environment was implemented in order to simulate certain parts of Paradise. The

hardware components of the environment consisted of four Micro VAXs, all running the Cronus

kernel and UNIX, and connected via an Ethernet. The four nodes were named pnodel, pnode2,

pnode3, and pnode4.

This chapter studies the implementation of a monitoring attachment (MA), a data collection

attachment (DCA), a workload manager (WM), and also the issue of global time. Using these

experimental and rudimentary implementations, an example APC was developed and instrumented.

6.2. Implementation Experiments

6.2.1. APC Attachment Implementations

This section describes the implementation of the MA and DCA of a Paradise APC. Several

methods for collecting and storing sensor data were implemented and then observed by

experimentation. Timing measurement data collected from those experiments are presented.

Experimental sensors were placed in a Cronus client program to obtain performance estimates of

different sensor data logging techniques. The sensor was placed inside a loop that iterated a number

of times specified by the User. The sensor had the following format:

pslcollgenSENSOR (Host, Type, StatID, Data)
HOSTNUM Host; /* Host sensor manager is on *1
long Type; /* Type of sensor *1
long StatID; /* Static ID of sensor *1
char **Data; /* Optional sensor data

Additional information that is logged when the sensor is processed include a timestamp, and the

UID of the principle owning the client process invoking the sensor.

The different methods of sensor data logging are described below:

Object Each sensor data entry is maintained as a Cronus 'object with associated
operations.

File The Cronus object manager is used to provide operations that log the sex. ior data
into a file, not an object.

Independent Cronus object manager is not used and data is directly written to a file.

Buffered Sensors are locally buffered before using either the File or Independent method to
storg sensor data.

54

6.2.1.1. Execution Time Measurement Results

The following results were obtained by measuring the absolute execution time for the benchmark

client program. Time was measured by inserting the gettimeofday command at the beginning and

end of the client program. The program was executed on a Micro VAX workstation with a single

active User and very low load. All time measurements are in seconds.

For reference, the execution time for the client program without any sensors was approximately

1.19 seconds for 100,000 loops, and approximately 0.01 seconds for 1,000 loops 29. Without sensors,

the program is just an empty loop with no execution parts.

Object

A Cronus manager acts as MA and DCA in the Object method. Each sensor in the APC is actually

an operation on this manager. Thus, as expected, execution speed is very slow as shown in figure

6-1. The type definition files for this Cronus manager is included in the appendix. With the Object

loops avg. time std. dev. max. min. # runs

10 2.29 0.37 3.13 1.89 9
100 21.99 2.71 27.45 20.05 9

1000 214.43 3.40 219.72 210.00 6

Figure 6-1: MA/DCA as Object Manager

method, a file named objectdb.32730 is maintained to keep object information. It was observed that

each object entry occupies approximately 500 bytes in the objectdb.327 file.

File

The File method uses a Cronus object manager to write sensor data into a data file. Thus, as in the

Object method above, each sensor is a manager operation, and each operation results in a write to

the data file. The object maintained by the manager contains information relatir,; to the data file.

loops avg. time std. dev. max. rain. # r,-.,s

100 21.46 1.34 23.55 19.48 9

Figure 6.2: MA/DCA as File Write Manager

Due to the similarity of the measurements of the File method and the Object method, no further runs

were performed. This similarity shows possible large overhead in the object manager itself (or in file

writing). To investigate these issues, the next two experiments (Independent and Miscellaneous)

2 9 For 100 loops, it was below 0.01 seconds and was immeasurable with available granularity ofgettimeofday

30327 is the sensor object's unique number. A unique number assigned to each different object type.

55

were performed. The approximate number of bytes for each sensor entry in the data file was 90

bytes.

Independent

The following data was obtained by writing the sensor as a procedure call to a routine that writes the

sensor data to a file. Thus, there is no object manager involved. Once again, the approximate

loops avg. time std. dev. max. min. # runs

100 8.14 1.48 10.81 6.80 9
1000 67.19 4.18 75.48 64.25 6

Figure 6-3: MA/DCA as Direct File Write

number of bytes per sensor entry in the data file was 90 bytes. The numbers of Figure 6-3 show a

rough estimate of pure file write time involved.

Miscellaneous

This section was included to try to obtain an estimate for the overhead added by using the object
manager. Objects were not maintained, instead, the sensors here represent the invoking of an

operation that does nothing. Thus, this represents the pure overhead of the object manager. The

loops avg. time std. dev. max. min. # runs

100 7.33 1.03 9.45 6.64 8

Figure 6-4: Manager Overhead

main reason that the numbers for Figure 6-4 and 6-3 do not add up to those of Figure 6-2 is because,

for the Miscellaneous method, no data is involved. When operations are called with data, the psl

routines of Cronus go through data checking and conversion into an allocated Octet Buffer. These

checking, conversion, and allocation times are not included in the numbers of Figure 6-4.

Buffered Sensors

In the Buffered Sensors implementation, sensors are cached locally and an operation is called only to

empty a full cache (or to flush the cache at end of execution). A Cronus manlager writes sensor data

into a data file. Thus, the local caching is the MA and the Cronus manager is the DCA. All data of

Figure 6-5 is for 100 loops and all times are in seconds 31 . The results shown for each entry represent

an average value for 9 runs. The field # Op. Calls of Figure 6-5 show the number of operations
invoked on the Cronus manager. It is the number of sensors divided by queue size. If the division is

3 'At time of writing, execution speed was significantly improved due to implementation modifications.

56

Cache size Avg. Time Std. Dav. # Op. Calls

1 20.17 0.5005 100
5 5.49 0.2316 20

10 3.70 0.3517 10
20 2.66 0.0912 5
30 2.44 0.0718 4

Figure 6-5: MA/DCA as Buffered Sensors

not exact, as in the case of cache size 30, one more operation call is need to flush out the remaining

sensors at the end of execution. Thus, for a cache size of 30, there are four operation calls. This is

why there is a non dramatic speedi increase when cache size is increased from 20 to 30 (because

while cache -jize increased by 50%, the number of operations only reduced by 20%). The speed

increase achieved with larger. queue size levels out due to the fact that the execution time per

operation increases with the larger queue size (more data passed).

6.2.2. Workload Controller

The following data is the initial results of a 'controller' that acts as a server to create, kill, and

signal processes on Cronus nodes. It is a very simple implementation of the WC part of PMC. For

this experiment, the basic WC, implemented as a Cronus manager, exists at each node and responds

to the User operations on it. The WC has operations to create, kill, and signal processes on its node.

The data shown is for the average time taken to create a process on a node. Other than fork and

execl-ing a process, the manager will keep an object database concerning each process. Each object is

of the following structure:

UID ProcID; /* Cronus UID of process */
DATE Timestamp; /* Time process was created */
int PID; /* The UNIX process ID */
int group; /* Group membership */
int Type; /* Type of creation *1
int Status; /* Status of execution */
char *ProcName; /* Name of the process */

The example process that was created on each node was a simple program that just has one printf

statement. A User interface was implemented to trigger operations on the different managers and

resided on host Pnode3. The results shown in Figure 6-6 are an average of 10 runs with all units in

seconds.

57

Host Called Avg. Time Std. Dev.

pnodel 0.485 0.0251
pnode2 0.526 0.0564
pnode3 0.351 0.0099
pnode4 0.480 0.0189

Figure 6-6: WC Time Measurements

6.2.3. Miscellaneous Measurements

A time manager w-"h a single GETTIME operation was set up on each Cronus host (pnodel,

pnode2, pnode3, pnode4). These time managers do not actually maintain any objects, but instead,

they simply return the local time. The purpose -:this experiment was to try and determine the time

differences between each host and a standard host. Pnode3 was chosen as the standard host, and

thus, a client program was written to run on pnode3 and collect data. The function of the client

program is shown below in pseudo code: the diff time for a run of 100 loops were averaged to obtain

getstandardtime (begintime);
getremotetime (remote_time);
getstandardtime (end_time);
averagetimes (begin-time, end time, avg_time);
subtracttimes (avg_time, remote-time, diff time);

Figure 6-7: Global Time Measurement Pseudo Code

the data. The above method assumes that the remotetime returned is obtained at the midpoint

between begin-time and endtime. However, the obtained data indicate that this is not quit true,

though very close.

6.2.3.1. Results

Figure 6-8 shows a summary of the collected data. As stated before, each entry is the average of

100 loops, and all times are in seconds. As seen in Figure 6-8, measurements were taken on two

separate days, with each day consisting of two measurements. The Difference field is the average

time difference between standard host and remote host. The Elapse field is how long it took to

obtain the remote time. The big difference in times for host pnodel are due to the fact that it was

re-booted between the two days. The time differences between the two days for pnode2 and pnode4

show a drift among standard and remote clocks. The results for pnode3 are the case where standard

and remote hosts are the same Ideally, the results for pnode3 would be 0, but the non-zero figures

are due to our assumption that remot'" time measurement is taken at the median point.

The difference in time between measurements taken on the same day range from a low of 0.5

58

Host Meas. Time Std. Dev. Difference Elapse

pnodel Aug. 1, 02:00 0.0120 51.6488
0.0116 51.6956

Aug. 2, 03:00 0.0224 -35.1519 0.3587
0.0114 -35.1758

pnode2 Aug. 1, 02:00 0.0188 356.5524
0.0501 356.5828

Aug. 2, 03:00 0.0281 367.9537 0.3394
0.0115 367.9713

pnode3 Aug. 1, 02:00 0.0230 -0.0518
0.0126 -0.0358

Aug. 2, 03:00 0.0074 -0.0367 0.1830
0.0101 -0.0382

pnode4 Aug. 1, 02:00 0.0230 1.1057
0.0173 1.1051

Aug. 2, 03:00 0.0303 -0.5899 0.3149
0.0281 -0.5894

Figure 6-8: Global Time Comparison

millisecond (pnode4 on day 2) to a high of 46.8 millisecond (pnodel on day 1). Most variations were

within 25 milliseconds. This time difference measurement technique is a potential method for

obtaining a global standard time (e.g. time on pnode4 is standard an others are adjusted).

6.2.3.2. GetDATE and gettimeofday

Measurements on the execution time differences for Cronus' GetDATE and the UNIX gettimeofday

were also performed and are shown in Figure 6-9.

loops gettimeofday GetDATE

1000 0.49 0.56
10000 5.01 5.66

100000 50.66 57.64

Figure 6-9: GetDATE vs. gettimeofday

6.3. Example Application

59

6.3.1. Matrix Multiplication

A matrix multiplication was performed in parallel on the four different pnodes. The two

multiplicand matrices and the result matrix are maintained as shared data via the use of a Cronus

manager. The result matrix is divided into four parts, with the task of calculating each part's values

being assigned to the four different nodes.

A starter program is used to either receive the multiplicand matrices as tty or file input. This
program then assigns coordinates for each host and starts the four parallel executions via our

preliminary implementation of WC. Within each host, execution time is measured and logged into a

file.

Since the Cronus manager of the matrices is on one host machine, and all other hosts must access
this manager for reads and writes, the manager is a potential bottleneck. Thus, a future experiment

might be to try replicated objects for the matrices on each host. This report shows the results of

having just one matrix manager. The first implementation was tried with single access (i.e. read

and write one matrix coordinate at a time). In the second implementation, reads are performed in

units of a line. Thus, a whole row or column is returned with each read, reducing the number of

operations that must be called on the matrix manager. The third and fourth implementations were

instrumented versions of the matrix multiplier.

6.3.1.1. Results

The results of Figure 6-10 are execution times at each local node for performing its section of a 10

x 10 matrix multiplication. The results for single read and row read access are shown, followed by

instrumented versions. The matrix manager was residing on pnode4.

The with sensors entry shows the time measurement results for instrumented code. Two methods

for data storage (via a Cronus manager and direct file write) were used. The sensors are locally

buffered in a queue size of 30. 18 sensors were inserted at write time (static) which resulted in 442

sensors at run time (dynamic). These 442 sensors "esulted in 14,400 bytes of sensor data to be

written int- "he data file. The instrumented code also used row access.

The time measurement results are summarized in Figure 6-10. It can be seen that user and

system times take up a very small portion of overall execution time. This is due to the waiting

periods involved when operations are performed either on the matrix manager or the sensor

manager (DCA). With direct file writes as DCA, there is no wait time since no manager operations

are involved, thereby resulting in faster execution speeds than the one with sensor managers. The

execution times for the direct file write method would decrease with a larger queue size.

The code that runs on each host to calculate a section of the result matrix is inrluded in the

appendix. The sensors are of form P.SENSOR (SENTYPE, STATID) and can be seen in this code.

60

Method Host Elps. Time Usr. Time Sys. Time

Single access Pnodel 268.48
Pnode2 361.75
Pnode3 427.09
Pnode4 95.96

Row access Pnodel 24.75 0.38 0.39
Pnode2 29.33 0.40 0.41
Pnode3 19.46 0.38 0.38
Pnode4 9.22 0.36 0.40

With sensors Pnodel 35.12 1.49 0.84

(Manager as DCA) Pnode2 38.26 1.47 1.30
Pnode3 41.96 1.46 1.02

Pnode4 14.34 1.41 0.95

With sensors Pnodel 27.01 0.50 0.79

(Direct file Pnode2 33.13 0.49 0.99

write as DCA) Pnode3 24.11 0.48 1.10
Pnode4 10.22 0.51 0.78

Figure 6-10: Matrix Multiplication Time Measurements

61

7. Design Conclusions

Now, when all of the Paradise mechanisms and tools have been described bottom up, let us take a

top down look on the whole design and try to analyze the various approaches taken. Let us also try

to determine how these approaches facilitate the implementation of various policies needed in order

to run, control, monitor, stimulate and collect data from an experiment.

Paradise enforces a hierarchical relational model of the world which consists of objects and their

relations. Each of the hierarchical layers supports its own set of objects and the operations on those

objects. In order to deal effectively with some layer, the User must have a policy at hand which deals

with the specific objects and their relations, and more importantly, knows how to map the objects

and relations from the adjacent hierarchical layers into those known to the User at the layer of

current interest. In order to clarify the previous statement, let us assume that the policy in question

deals with monitoring of a Host OS kernel. Let us further assume that, in a simplified view, objects

known to that hierarchical layer are processes and queues and that the only relations known are

relations between these objects (i.e. process can be waiting in some queue or not). In actuality, data

collected from an experiment will consist of a set of event records and their absolute time of

occurrence.

Unlike other models, Paradise abstracts Users at layers other than the sensor/event layer from

having to know anything about the events and their relations during the development, as well as

during the data analysis phase. In another words, if somebody wants to observe a process in a Host

OS, it is possible to make that process visible without knowing the exact sensor ids that have to be

involved in order to make this happen. We will also be able to analyze the behavior of that process

without detailed knowledge about the same sensors and the events they produce. It is the designer of

the Host OS monitoring policy who makes all the necessary mappings from OS events to objects

called processes (and back' available to other Users via the IP.

In order to allow for policies which are independent of underlying mechanisms, Paradise has to

adapt the unique interface to all the relations and the objects generated at all the hierarchical

layers. It also has to assure that there is a basis for mechanisms which will support mapping from

one layer to another if the relations for each layer are known separately. In this design, both goals

are achieved by the use of a relational database system acting as an integration platform (IP).

At the paramount of the Paradise design hierarchy is an object called the experiment. An.

experiment is a test of some kind which is run with the help of the Paradise systen? in order to

retrieve specific data about the behavior of the system under test. In Paradise, the User first

prepares an experiment. Then the User runs that experiment. During the experiment run, the

User may or may not choose to interact with the experiment in question. The User is supposed to

collect data and kill the experiment at the end of its execution. Finally, the User takes the data

collected and performs various analysis and/or compares it with the data collected from other

62

experiments. All of the Users actions can be made automatic via execution of a previously prepared

experiment script.

An experiment consists of four distinguished objects: a workload, a monitor profile, a fault

profile and experiment data. The Paradise User deals with these objects in the various phases of

an experiment.

In the present design we chose to associate the two topmost menus in the User interface 32 with

the process of experiment preparation. The functions from the first menu (i.e. "Library

Preparation") deal mostly with the design of a workload by designing the APCs that constitute that

workload. They also deal with the design of fault classes for that workload. According to our

experience with the similar existing systems, it is most likely that some parts of a workload and/or a

fault class will be reused by the same, or by other Users. Due to this fact, we decided to support

internal Paradise workload and fault libraries in order to facilitate the process of sharing and

maintaining of the reusable components. Paradise tools that are used for maintenance of these

libraries are collectively called librarians.

The menu called "Experiment Definition" deals with the definition and the creation of

monitoring and fault profiles and the production of an experiment script. In our design we decided to

facilitate this process by:
* Creation of the high level commands for the Paradise Experiment Description

Language (i.e. by adding flexible control flow, synchronization and i/o commands, such
as branches and loops, waits etc.)

* providing a graphical interface to display development time relations at each level of
the hierarchy.

Our design assumes that during the Experiment Execution phase an experiment script is

interpreted by the Paradise Experiment Controller. It was our decision that this experiment script

could allow for not only a batch mode of execution but would also allow for some interaction by

adding input and output to the set of Paradise Experiment Script Commands. In our view it is very

important that not only automatic experimentation, but also the interactive one is possible. 3 3

There are two basic types of Iadise Script commands in this design depending upon the place

where a particular comma" is executed. Some of them (like branching, i/o and synchronization

related commands) are executed in PWS. The rest of the commands related to the workload

control, monitoring, fault injection, and data collection are executed by the related controllers

in each PNODE.

In this design, PMC is the Paradise peer for all the communication between a PNODE and the

32Pleage see Figure 5-3.

3 3 0ne can envision more need for the automatic mode during the predeployment testing, while more interactions will be
needed during the popstdeployment phase where User needs more direct scrutiny over execution.

63

rest of the Paradise system. It is very important that the interface to this peer support enough

functionality to allow for the implementation of all the needed mechanisms. It is also important

that this interface is portable to the variety of architectures. In order to fulfill these requirements,

our design defines the PMC as a Cronus object manager. This decision automatically provides for

portability. Due to the fact that the basic PEM/PMC structure supports a client-server model, even

if we abstract Cronus, it will be easy to implement PEM/PMC with the rudimentary IPC

mechanisms outside Cronus if necessary.

All modern operating systems provide, in one way or another, an abstraction of a process. Paradise

supports the abstraction of an application client which almost directly maps into a process. However,

operating systems differ in the way these processes communicate. Some of them provide mechanisms

for shared memory, while others support data exchange via messages. The Paradise design assumes

that there is no underlying support for memory sharing, but if certain PNODE architectures support

it, related implementations can take advantage of that fact. In another words, the design we present

here defines an abstraction of an attachment which is a logical alternate control flow inside an APC

servicing the command requests from a PMC. The Interface through which this mechanism is

implemented represents a standard remote procedure call (RPC) interface. A very important idea to

notice here deals with the fact that PMC as a source of a command and an attachment as the target

for that command could share the same memory space if possible (i.e. via another PNODE

architecture, or another layer like OS).

As an exercise, to prove that the functionality of the designed interfaces suffice for building

Paradise policies at various layers, let us compare the mechanisms and their implementations

needed to support OS kernel and an APC monitoring policies. It is obvious that in our design one has

to insert sensors into the OS kernel as well as into an APC in order to make their objects visible. It is

also obvious that such an instrumented entity will have to keep a list of all related sensor control

blocks in its global address space. This means that, even an OS kernel which is not a process but a

collection of data structures and the procedures to deal with them, will have to have the same type of

monitoring and fault profiles as an APC has. Moreover, the same commands will be used to manage

these profiles. The only difference will be the impleme-tation which is based, in the case of an OS

kernel, on simple procedure calls and not on RPCs. Howevc., for an OS which supports memory

sharing, even this slight implementation difference .,appears. If one would build a hardware

sensor, it also would have to have a block of registers to control the operations, associated with it.

There is no reason why a list of such control blocks couldn't be considered as a monitor profile and,

consequently, handled in the same way. Exactly the same arguments could be given for the fault

profiles and the fault injection policies.

Now that we have given the rationale for the proposed mechanisms and the interfaces that

connect them, let us analyze the data on performance obtained from the feasibility study presented

in Section 6 of this document. The obtained data can be classified into four different groups:
. Performance data of different notification mechanism implementations

64

" Performance data of the proposed implementation of a workload controller

" Performance data of two alternative timing mechanisms

" Performance data of a fully monitored test application

Performance analysis of various notification algorithms show that the notification implementation

with a local queue and a direct file write operation on overflow gives an order of magnitude better

performance than the other implementations measured. This made a clear choice possible in the

proposed design. Let us also mention two design features, which, will in most of the practical

situations, make the overhead of the event recording even less. Our design offers an interface to

control the size of a monitoring queue. In some applications, where only relatively small number of

events are recorded, the size of that queue can suffice to hold all the event records generated during

the experiment. This means that there will be no overflow and, consequently, no file i/o - which is the

most intrusive part of the notification process. A second design feature which reduces a number of

flushes to the LRF is the mechanism of subordination which enables that, from the whole class of

events, only those which happen in a predetermined order will be recorded, thus reducing the

number of event records at the source with virtually no cost in performance.

The workload controller feasibility study shows that average measured APC creation time is

300-500 ms in the present implementation. Based on our experience with other systems we felt that

this kind of performance is more than satisfactory.

Timing measurement shows two things. First, that the clocks in the different PNODES drift

despite the fact that our local network has standard BSD clock synchronization servers in effect.

Second, they show that standard Cronus interface to the time is adding some overhead to the

underlying UNIX call it uses (gettimeofday/date = 5.01/5.66) thus we decided to use the UNIX call.

The last group of measurements deal with a fully instrumented distributed matrix multiplication

application. Measurements show that:

* 442 event records were generated and collected.

* Performance greatly depends on the way globa' objects (i.e. matrices) and how client's
access to them are organized.

* The predominant part of the execution time is sr-,.at waiting for a responses to messages
generated inside object operation calls, so the ystem resource utilization is low (cca. 10 -
20%).

* The overhead generated by the recording of all the 442 event records was less than 10%,
even using very short queue length of 30 records.

Taking into consideration that normally a User would like to see about 10% to 20% of the visible

events recorded, we expect that in practice, execution time overhead would be around 1% - Z% of the

overall experiment execution time.

65

Appendix I
Sensor Object Manager Specification

The object specification file collector.typedef used with the definetype command to generate

common portions of the sensor object manager:

type Collector = 109 /* 109 is a unique type number */
is primal /* make the object primal *1
abbrev is coll /* abbreviation for convenience *1
subtype of Object;

cantype ENTRY /* defining a queue entry */
representation is Entry:
record

Type: U161;
Timestamp: U321;
Client: EUID;
StatID: U32I;
DynID: U321;
Status: U16I;
Info: ASC;

end ENTRY;

operation SENSOR /* SENSOR op has 2 parameters */
(Type: U16I;
StatID: U161;
optional Data: ASC) /* optional data string */

operation RETRIEVE () /* RETRIEVE op only outputs */
returns

(AnEntry: Entry);

end type Collector;

The manager specification file collector.mgr used with the genmgr command:

manager "The Collector Manager"
abbrev is coll

type coll
variable representation is QUEUE
coll implements all from coll
obj implements rest

66

Appendix II
Workload Controller

This section includes parts of code that were used to implement the Workload Controller as a

Cronus manager.

I.1. Manager Description
The following is the cont.typedef file that was used with the Cronus definetype command.

type PIE Cont = 227
is primal
abbrev is ctrl
subtype of Object;

cantype PROCENTRY
representation is Proc Entry:
record

Client: EUID;
Timestamp: EDATE;
PID: U321;
Type: U321;
Status: U321;
ProgName: ASC;

end PROCENTRY;

generic operation CREATEPROC(/* Create a Process */
Name: ASC;
Args: array of ASC);

generic operation GETLOG () /* Get Log of processes */
returns (
List: array of PROCENTRY);

generic operation PSIGNAL (/* Signal a process *1
ProcName: ASC);

end type PIECont;

The following is the cont.mgr file that was used with the Cronus genmgr command to create the

common sections of code.

manager "The Workload Controller"
abbrev is ctrl

type ctrl
variable representation is PROC ENTRY

ctrl implements all from ctrl
obj implements rest

67

11.2. Workload Controller Operation Implementation

The following file includes the implementations of the operations that were defined on the

Workload Controller. Non-significant and standard Cronus parts have been omitted.

/* $Revision$

** Operation code for ctrl manager.

#include "header.h"
#include <sysltypes.h>
#include <sys/socket.h>
#ifndef lint
static char RCS[] =

"$Header$";
#endif /* lint */

int mgrsd;

init_mgr(argc, argv)
int argc;
char *argv [J] ;

struct sockaddr mgr_sock;

system ("rm -f PIE:MGR");
if ((mgr_sd = socket (ATUNIX, SOCKDGRAM, PTUNSPEC)) =-1)
{

Log (0, "ERROR Could not create manager socket.\n");
return (ERROR);

I
strcpy (mgrsock.sadata, "PIE:MGR");
mgrsock.sa_family = ATUNIX;
if (bind (mgr_sd, &mgrsock, sizeof (mgrsock)) = -1)
{

Log (0, "ERROR Could not bind name to mgr_sock.\n");
return (ERROR);

I

ctrl init()
{

I

create database(t)
TYPE t;'

ctrlgenCREATEPROC(r, input, output)
OperationParms *r;

68

reqctrlgenCRE.ATEPROC * input;
repctrlgenCREATEPROC *output;

long the_-PID;
UID new_-UID, *prinUID;
ProcEntry New -entry;
Object~escriptor *objdes;

GetDATE (&New message.Timestamp);
if (input-dimensions.Args != 0)

input->Args (input->-dimensions .ArgsJ NULL;
else

input->Args[0] = (char *)sditto (input->Name);
input->Args[l] = NULL;

if ((the PID = forko) = 0)

execv (input->Name, input->Args);
Log (0, "ERROR execl.\n");
exit (1);

if (the PID == -1L)

Log(0, "ERROR fork\n");
return;

Create Cronus object.

New -entry.PID = thePID;
New_entry.Status = RUNNING;

New entry.ProgName = (char *)sditto (input->Name);

Store object.

ctrlgenGETLOG(r, input, output)
OperationParms *r;
reqctrlgenGETLOG * input;
repctrlgenGETLOG *output;

static Proc Entry *Founds[20];
Proc_-Entry 7*hn -entry;
ObjectDescriptor *objdes;
HOSTNUM this host;
int i = 0;
long The -handle;

UrD currentUID;

for (The-handle = (long)DBNext(CT_PIE_Copt, (long)0, ¤tUID);
((The_handle ISNT (long)ERRO'R) AND (The-handle ISNT (long)O));

69

The-handle = (long)DBNext(CT_-PIE-_Cont, The -handle, ¤t_-UID))

if (IsGenericUID (¤tUID)) continue;
if ((objdes = (ObjectDescri.ptor *)ReadObjectDescrjptor (¤tUID))

=NULL)

Log (0, "NULL object descriptor.\n");
continue;

if ((An-entry=-(Proc Entry *)GetVarData(PROCENTRY, objdes)) =NULL)

Nack (r, lasterror0)
Log (0, "Invalid [NULL] pointer to data.\n");
output->valid = FALSE;
return;

Founds[i] = (ProcEntry I)Talloc (sizeof (ProcEntry));
CopyUID (&An-entxy->Client, &Founds(i]->Client);
CopyDATE (&An -entry->Timestamp, &Founds (ii->Timestamp);
Founds(i]->Type =An-entry->Type;
Founds(i]->PID =An entry->PID;
Founds[i]->Status =7An-entry->Status;

Founds (ii ->ProgName = (char *) sditto (An-entry->ProgName);

FreeObjectDescriptor (objdes);

FreeVarData (An-entry);
i++

if (The-handle = (long)ER.ROR)

Nack (r, lasterror)
Log (0, "DBNext error.\n");
return;

output->dixnensions.List = i
output->List = Founds;
output->valid = TRUE;

ctrlgenPSIGNAL(r, input, output)
OperationParms *r;
reqctrlgenPlESENSOR * input;
repctrlgenPIESENSOR *output;

struct sockaddr send-sock, recv -sock;
char send-msgflOO], recv -msg[100];
mnt send-len, recv-len;

sprintf (send -msg, "Are you there?");
send -len = strien (send msg);
sprin~tf (send -sock,.sa-data, "PNODE:%,s", input->ProcName);
send -sock.sa -family = AFUNIX;
if (sendto (rgr-sd, send-msg, send len, 0, &send-sock, aizeof (struct sockaddr))

70

Log (0, "ERROR Manager sendto.\n");

return (ERROR);

recv len = sizeof (struct sockaldr);
if (recvfrom (mgr _sd, recv-msg, 200, 0, &recv sock, &recv-len)=-1

Log (0, "ERROR Manager recvfrom.\n");

return (ERROR);

71

Appendix III
Experimentation Example - Distributed Matrix

Multiplication

This appendix describes a simple example of a Paradise experiment. In the example the

application used is the distributed matrix multiplication described in Section 6.3.1.

The example is presented in two sections:
" Fault Free Experimention (FFE) - a workload is developed and instrumented, and an

experiment is prepared and executed.

" Fault Injection Experimentation (FIE) - using the same workload as the Fault Free case,
an experiment is prepared for Fault Injection.

The reason for this approach is to provide a clarity of view by separating issues of concern. The

fault free phase focuses on- the issues of workload preparation, workload instrumentation,

experiment preparation, experiment execution, and data management. This is the usual paradigm
with which people are familiar. The fault injection phase focuses on the issues of fault preparation

which in itself is a complex topic. This approach actually follows the expected manner of experiment

development - first deal with the the deterministic facets of behavior and then introduce the non-

deterministic elements. Experience has shown that experimentation usually proceeds in such a

graduated manner.

111.1. The Paradise Environment
The purpose of these examples is to comprehensively illustrate the interrelationship of the

principal players in experimentation:

" The system User

" The Paradise system

" The workload under test

" The underlying testbed

11.1 1. Experimentation in the Paradise Environment
Before delving into the details of the examples, we first quickly review the major items of

experimentation and how they are presented in the examples. The experimentation process

includes:

* Workload Preparation

" Development of the application code.

" Automated instrumentation

" Sensor profiles

• Element profiles

• Monitor Fault Profiles

72

" Associated data files

" Workload Definition

" Fault Preparation

" Fault Class Definition

" Methods and Domains

" Fault Generation

" Fault Lists

• Fault Profiles

" Experiment Preparation
• Experiment Definition

• Experiment Script (Compile)

" Experiment Execution

• Experiment Script (Interpret)

" Start/Stop experiment

* User interaction

" Real-time data presentation

" Data Collection

" Collect data contained in the Local Repository Files (LRF)

" Data conversion to Paradise Canonical form

" Data cataloging and storage

* Data Analysis (Statistical)

* Specification of analysis tools

" Development of specialized tools

" Experimentation reports

" Data Presentation (Graphical)

" Specification of presentation tools

" Development of specialized presentation tools

All ,^ the above operations and objects must be managed within the context of a specific

ex , riment: The purpose of the above list is to accent the point that experimentation in itself is a

complex undertaking. If one takes into consideration the additionai prospect of multiple

experiments and multiple Users, the task becomes quite daunting. The purpose of Paradise is to

free the User from these issues and allow the User to deal with experiments as entitics in their own

right.

73

111.1.2. Working in the Paradise Environment
The User performs all development operations within the Paradise environment. The User

interacts with Paradise by means of the Paradise graphical interface which may include an

icon/menu package.

The User/Paradise operate within the context of an experiment. Thus, the User enters Paradise

at the top level menu and chooses the experiment domain. All of the information concerning the

chosen experiment is now available for User review and inspection. The experiment status may be

determined as well as the current inventory of components. The use of the menu interface enforces

procedural rules which in turn permits Paradise to perform the administrative functions for

experiment management.

It is expected that experiments will be at various stages of development at one time or another.

Paradise introduces a great degree of flexibility in the manner of preparing and executing

experiments. The User may develop workloads, faults, experiment descriptions, etc. at any time or

in any order. Data analysis may be performed at a later, convenient time.

As the User develops an experiment (i.e. components), Paradise performs relevant administrative

functions which maintain the current status of the Experiment development. When an experiment

is executed, the generated data also becomes a part of this administrative domain.

Hidden in this discussion is an extremely important fact. Since Paradise administers the system,

it becomes possible to share experimental resources and components among experiments. Thus

workloads, fault classes, experiment descriptions may be shared, thereby eliminating unnecessary

replication. Version control - the correlation of workloads, faults and experiment data - is

automatically performed. This functionality is implemented with the Paradise Librarians.

The important point to keep in mind while reading these examples is that the Paradise system

performs the arduous administrative tasks while freeing the User for the more creative facets of

experimentation.

111.2. Description & tne Example Workload and Experiments
The example workload is a simple variation of the matrix multiplication example discussed in

Section 6.3.1. Two multiplicand matrices and the result matrix are maintained as shared data by an

Application Manager (APM) residing in an individual PNode. The multiplication task itself is

divided into four parallel activities. The result matrix is partitioned into four parts, and the task of

calculating the values of each part is assigned to an application client (APC) residing in an

individual PNode. Thus, there are a total of five PNodes utilized in this example.

The general scenario of the example is to prepare two experiments, one in which the workload

executes in Fault Free mode, and one in which the workload executes with Fault Injection. The first

74

covers the mechanics of preparing the workload, experiment description, and data management (i.e.

collection, analysis, presentation). The second covers the mechanics of generating faults and then,

utilizing the previous fault free developments, discusses the manner of performing experiments with

fault injection.

Each example is described in terms of seven phases:

" Workload Preparation

" Fault Preparation

" Experiment Description

" Experiment Execution

" Data Collection

" Data Analysis

" Data Presentation

111.3. Fault Free Experimentation
The purpose of this example section is to illustrate the Paradise methodology for preparing a Fault

Free experiment. The primary topics discussed are:
" Workload Preparation

" Experiment Description (Section 111.3.3)

" Experiment Execution (Section 111.3.4)

" Data Collection

" Data Analysis

" Data Presentation

111.3.1. Workload Preparation
There are three main bodies of code for this particular example: SAPC, matrix object manager

(APM), and the APC executing in each of four nodes. The code for the three are shown in section

111.3.1.4, 111.3.1.2, and III.3.1.1 respectively. For the sake of brevity, only the APC code is then

followed through the Paradi-. development pro~ess. The others are not presented since the process

is similar. The fundamv.,al development steps are:

" Application Code Development (Section 111.3.1.1)

" PPROC Pass and Sensor Profile Generation (Section 111.3.1.5)

* Compilation and POPROC Pass and Element Profile Generation (Section 111.3.1.8)

" Monitor Fault Profile Generation (Section 111.3.1.10)

The last step is to create the Workload Definition (See Section 111.3.1.11) which describes the

topographical specification of the workload. This specifies the PNodes in which the APMs and APCs

will execute plus other infl, rnation for workload startup.

75

111.3.1.1. Application Code Development
The first step in actually implementing an application in Paradise is to specify the application

code. The code for the SAPC and APC for this example is written in the C language while the matrix

manager (APM) is specified in the standard Cronus manner.

111.3.1.2. Matrix Object Manager (APM)

The following is the mat.typedef file used with the Cronus command definetype that specifies the

object types in the matrix manager. The C style comments were added for clarity.

type PIE matrix2 = 234
is primal
abbrev is matrix2
subtype of Object;

cantype A-COLUMN
representation is A-Column:
record

Column: array of F32;
end ACOLUMN;

cantype THE MATRIX
representation is The_Matrix:
record

Row: array of ACOLUMN;
end THEMATRIX;

generic operation INITIALIZE (/* Set to 0
rows: U321; /* Number of rows */
columns:U321); /* and columns *

generic operation GETROWVALUE (/* Return specified row
row: U321;
which: U161) /* one of 3 matrices: 2 in & 1 out */
returns (
Values: array of F32);

generic operation GETCOLUMN-VALUE (/* Return specified column */
column: U321;
which: U16I)
returns (
Values: array of F32);

generic operation PUTVALUE /* Put value in coordinate */
row: U321;
column: U321;
which: U161;
Value: F32);

end type PIEmatrix2;

Shown below is the mat.mgr file that is iVsed with the Cronus genmgr command.

manager "The Matrix Manager"

76

abbrev is mtrx

type mat rix2
variable representation is THEMATRIX
matrix2 implements all from matrix2
obj implements rest

After the definetype and genmgr Cronus commands are run, several files will have been generated.

Of these, the User takes the mtrxops.skl file to specify the implementation of the operations in

mtrxops.c. It is this mtrxops.c file that is instrumented in a similar manner as the APC code

described in Section 111.3.1.6.

111.3.1.3. APC Code

This section shows the matrix multiplication program that is executing in parallel on the four

different nodes. Note that no. User sensors have been installed because the system sensors to be

automatically installed are quite sufficient. As a quick preview, execution profile time

measurements are obtained after experiment execution by comparing the timestamps for the

P_APCSTART and P_APCEND system sensors which are inserted in the PPROC pass as described

in Section 111.3.1.6.

main (argc, argv)
int argc;
char *argv[];
{

float B Columns[MAX_SIZE/4]; /* To store all columns used */
float *temp; /* ptr to row or column returned

by psl operation routines *1
int xl, x2, yl, y2, sz, i, j, k, len;
float sum;

xl = atoi (argv[l]);
x2 = atoi (argv[2]);
yl = atoi (argv{3]);
y2 = atoi (argv[4]);
sz = atoi (argv[5]);

for (j = yl; j <= y2; j++) /* Obtain -'1 columns that will be used *1

pslmatrix2genGETCOLUMNVALUE(NULT, j, 2, &temp, &len);
for (i = 0; i < len; i++) /* Store in B columns matrix */

B Columns[i](j-ylJ = tempti];
free (temp);

I
for (i = xl; i <= x2; i++) 1* perform multiplication */

pslmatrix2genGETROWVALUE(NULL, i, 1, &temp, &len); /* Get row
for (j = yl; j <= y2; j++)
{

sum = 0;
for (k = 0; k < sz; k++) /* mult. element by element */

sum += temp(k] * B_Columns[.k][j-ylJ;
pslmatrix2genPUTVALUE (NULL, i, j, 3, sum); /* Store result *1

77

)

free (tamp);

111.3.1.4. SAPC Code

The following code is the User interface that will read in the two matrices to be multiplied and

then start concurrent execution of the APC on the different nodes by invoking a creat-proc operation

on the Workload Controller (WC) of each target node. The name of the SAPC is starter. Note that

intermediate code is not presented since it is unnecessary for the purpose of this description.

#include "/usr/cronus/include/cronus.h"
#include <stdio. h>

extern char *sditto);

main (argc, argv)
int argc;
char *argv[] ;
{

sz = atoi (argvl]);
if ((STRINGtoHOSTNUM ("pnodel", &hostl) -ERROR) II

(STRINGtoHOSTNUM ("pnode2", &host2) --ERROR) H
(STRINGtoHOSTNUM ("pnode3", &host3) =-ERROR) I
(STRINGtoHOSTNUM ("pnode4", &host4) = ERROR))

(
printf ("ERROR in STRINGtoHOSTNUM.\n");
exit (1);

pslmatrix2genINITIALIZE (NULL, sz, sz);

Read in matrix from file or tty.

Initialize proper argument list.

pslctrlgenCREATEPROC (&hostl, "multme3", args, 6);

Initialize proper argument list.

pslctrlgenCREATEPROC (&host2, "multme3", args, 6);

Initialize proper argument list.

pslctrlgenCREATEPROC (&host3, "multme3", args, 6);

Initialize proper argument list.

pslctrlgenCREATEPROC (&host4, "multme3", args, 6);

printf ("Use 'showme %d' to see xesults.\n", sz);
#endif
I

78

111.3.1.5. PPROC Pass

The Paradise PPROC inserts system sensors and extracts the sensor profile along with

development time data. This section shows what the code looks like once it passes through the

PPROC and has been instrumented. Recall that the two parameters for the PSENSOR are sensor

type and a Paradise assigned static id. Also shown is the sensor profile that is extracted from the

APC code by the PPROC. Once again, note that we are only following through the APC code due to

space considerations.

111.3.1.6. Instrumented APC Code

The following is the APC code of Section 111.3.1.3 after instrumentation. In our example, no User

sensors were used, but User sensors described in Section 4.1.2.1 could have been inserted when the

source code was created.

main (argc, argv)
int argc;
char *argv];
{

float BColumns[MAXSIZE/4]; /* To store all columns used */
float *temp; /* ptr to row or column returned

by psl operation routines */
int xl, x2, yl, y2, sz, i, j, k, len;
float sum;

P SENSOR (PAPCSTART, 1);
xl = atoi (argvll]);
x2 = atoi (argv[2]);
yl = atoi (argv[3]);
y2 = atoi (argv[4]);
sz = atoi (argv[5]);

for (j = yl; j <= y2 ; j++) /* obtain all columns that will be used *1
{

P_SENSOR (PLOOPTOP, 2);
P SENSOR (POBJENTRY, 3);
pslmatrix2genGETCOLUMNVALUE(NULL, j, 2, &temp, &len);
P_SENSOR (P_OBJEXIT, 4);
for (i = 0; i < len; i++) /* Store in B columns i-, -ix */
{

P_SENSOR (PLOOPTOP, 5);
BColumns[i](j-yl] = temp[i];
P_SENSOR (PLOOPBOTTOM, 6);

)
free (temp);
P_SENSOR (PLOOPBOTTOM, 7);

I
for (i = xl; i <= x2; i++) /* perform multiplication */
(

P_SENSOR (P_LOOPTOP, 8);
PSENSOR (POBJENTRY, 9);
pslmatrix2genGETROWVALUE(NLL, i, 1, &temp, &len); /* get a row */
P_SENSOR (POBJEXIT, 10);

79

for (j = yl; j <= y2; j++)
{

P_SENSOR (PLOOPTOP, 11);
sum = 0;

for (k = 0; k < sz; k++) /* mult. element by element */
{

P SENSOR (PLOOPTOP, 12);
sum += temp[k] * BColumns[k] [j-yl];
PSENSOR (PLOOPBOTTOM, 13);

I
PSENSOR (POBJENTRY, 14);
pslmatrix2genPUTVALUE (NULL, i, j, 3, sum); /* Store result */
P SENSOR (POBJEXIT, 15);
P SENSOR (PLOOPBOTTOM, 16);

}
free (temp);
P SENSOR (PLOOPBOTTOM, 17);

I
P SENSOR (PAPCEND, 18);
PSENSORFLUSH (;

111.3.1.7. Sensor Profile
The following is the Sensor Profile 34. There is one sensor profile entry for each sensor in the APC

code. The line number for the Sensor Profile entries will be the index into the Monitor Control Block

within the APC. This line number will also be equal to the static ID associated with each system

sensor. Note that all the sensors are initially disabled (i.e. Enable = 0), have no subordinates (i.e.

Sub = 0), and have no linked fault targets (i.e. Flt = 0).

Line Enable Status Pro Act Epi Sub Flt
1 1 0 31 0 0 0 0 0
1 1 0 31 0 0 0 0 0
2 0 31 0 0 0 0 0
3 1 0 31 0 0 0 0 0
4 I 0 31 0 0 0 0 0
5 1 0 31 0 0 0 0 0
6 1 0 31 0 0 0 0 0
7 0 31 0 0 0 0 0
8 I 0 31 0 0 0 0 0
9 1 0 31 0 0 0 0 0

10 1 0 31 0 0 0 0 0
11 1 0 31 0 0 0 0 0
12 1 0 31 0 0 0 0 0
13 1 0 31 0 0 0 0 0
14 1 0 31 0 0 0 0 0
15 1 0 31 0 0 0 0 0
16 1 0 31 0 0 0 0 0
17 I 0 31 0 0 0 0 0
18 1 0 31 0 0 0 0 0

Please note that all of the above sensors were automatically inserted into the User code. The user

34 See section 2.2.2 for details.

80

now has the option to selectively enable any of the above sensors, which are initialized as disabled.

111.3.1.8. Compilation and POPROC

After all User application code is passed through the Paradise PPROC, it is compiled. The Matrix

manager is linked with the cronus and mgr libraries (supported by Cronus) and the APCs are

compiled with the mtrxpsl.o and mtrxcts.o files that were obtained when the matrix manager was
passed through the genmgr command described in Appendix section 111.3.1.2. The code is compiled

with the debugging switch on so that the POPROC can extract the Element Profile.

111.3.1.9. Element Profile

The element profile consists of a list of the starting virtual address and length of all global
variables, functions, and procedures. This information will later be used to generate a Fault List for

the APC that will be combined with the sensor profile to obtain the Monitor Fault Profile.

Name Startaddress Length (bytes)

main 0x56 0525
B columns Oz7fffadcc 50
temp Ox7fffadc8 8
i Ox7ffffcOO 4
j Ox7ffffbfc 4
k Ox7ffffbf8 4
yl Ox7ffffc0c 4
y2 Ox7ffffcO8 4
sz Ox7ffffc04 4
len O7ffffbf4 4
xl Ox7ffffcl4 4
x2 Ox7ffffclO 4
sum Ox7ffffbec 8
argc Ox7ffffaa4 4
argv Ox7ffffab4 8

111.3.1.10. Monitor Fault Profile (MFP) Generation

This is the last step in the application development. In general the information from the APC
fault list and the sensor profile are combined to obtain the Monitor Fault Profile.

In this fault free example, however, no fault list has been generated and/or specified, so no fault

profile is included in this MFP. Consequently, the only remaining step is for the User to specify the

sensors to be enabled in order to make the instrumentation visible. This can be done in one of three

ways:
" Interactively, by using the Paradise graphic interface. The User displays the Paradise

Paramap and selects the desired sensors either by type or individually using the mouse
pointer, for example.

" Dynamicplly, by issuing P.set-sensor() (see Section 3.2.3) commands to a specific APC.
Various sensor parameters (including enable) can be modified. this way. This allows

81

different variations of an experiment to be performed.

*Statically, by associating a type of sensor with a class of faults. This command will be
part of an experiment description.

Suppose that the User is interested in profiling the APC execution. By enabling the
P_APCSTART (#1) and PAPCEND (#18) sensors, the execution time of the APC can be derived

during the Data Analysis phase of the experiment. The actbase (i.e Act = 1) for these two sensors is
set at 1, thus the sensors will create an event record for only the first firing. The Sensor Profile now

looks as follows:

Line Enable Status Pro Act Epi Sub Fit
1 1 1 31 0 1 0 0 0
2 1 0 31 0 0 0 0 0
3 1 0 31 0 0 0 0 0
4 I 0 31 0 0 0 0 0
5 I 0 31 0 0 0 0 0
6 1 0 31 0 0 0 0 0
7 I 0 31 0 0 0 0 0
8 1 0 31 0 0 0 0 0
9 1 0 31 0 0 0 0 0

10 1 0 31 0 0 0 0 0
11 1 0 31 0 0 0 0 0
12 1 0 31 0 0 0 0 0
13 I 0 31 0 0 0 0 0
14 I 0 31 0 0 0 0 0
15 1 0 31 0 0 0 0 0
16 I 0 31 0 0 0 0 0
17 I 0 31 0 0 0 0 0
18 1 1 31 0 1 0 0 0

<null fault profile>

As a quick preview, when the APC code is transferred to the specified resident PNode(s), a copy of

the MFP accompanies it. (Paradise automatically transfers all related files of an APC to the target
PNodes based only the specification of the APC id.) When the APC starts executing, the MFP is

used to build the monitor (and fault) control blocks discussed in Section 2.2.2.

111.3.1.11. Workload Definition
The last task of the User would be to describe to Paradise the workload distribution. This might

be done in the following possible format:

Create (APC, multiply.c, pnodel, /usr/examples/matrix/multiply)
Create (APC, multiply.c, pnode2, /usr/examples/matrix/multiply)
Create (APC, multiply.c, pnode3, /usr/examples/matrix/multiply)
Create (APC, multiply.c, pnode4, /usr/examples/matrix/multiply)

Create (APM, matrix, pnode4, /usr/examples/matrix/mgr/mtrxmgr)
Create (SAPC, starter.c, pnode4, /usr/examples/matrix/starter)

The syntax for the Create command above is:

Create (code type, prog name, target host, target directory)

82

Paradise utilizes this information at experiment execution time. Paradise will obtain all named

code from the User (either through interactive input or file input), send this code to the target

directory in the target host, and compile the code and store it.

111.3.2. Fault Preparation
Since this is a fault free experiment, there is no need to perform this phase. Note, however, that

in a mature Paradise system, certain tools and facilities would be available that would eliminate any

requirement for User action here, even in the case of a fault injection experiment. By specifying a

Fault Class Definition identifier via the Paradise interface, a certain class of faults would be

automatically generated by means appropriate facilities in the Fault Library. (This set of faults is

referred to as a Fault List.) This would have to be done before the MFP Generation step discussed

above. See the fault injection experiment in Section III.4 for this discussion.

111.3.3. Experiment Description
The purpose of the Experiment Description is to specify the manner in which an experiment is to

be conducted. The Experiment Description, for example, can be a text file object which the User

creates via Paradise. The User selects the Experiment Description menu and generates the file

using one the following possible options:

* copy an existing Experiment Description file

" edit an Experiment Description template file provided by Paradise

" fill in a form provided by Paradise
(pertinent fields could be pre-filled by Paradise)

" create/edit a new Experiment Description file

The User typically provides the following information in defining an experiment:

* experiment id - provide an identification name for the experiment.

* workload definition - specify the workload to be utilized in the experiment and the
distribution topography (See Section 111.3.1.11).

* run regime - specify whether the experiment consists of one or multiple runs (i.e.
describes experiment iteration).

" time regime - specify the time frames for experimentation runs.

" data collection regime - specify the frequency and time of data collection.

" data analysis regime - specify the type of analysis functions to be applied to the data arid
which information is to be placed in the IP.

" data presentation - specify the type and form of data processing for graphical and/or
textual rendering of experiment data.

The User provides the appropriate expeiiment control commands and arguments to compose an

Experiment Description. See Section 4 for a description of these commands.

As an example, consider one of the simplest forms of experimentation in which a workload is

83

executed in fault free mode for a specific period of time, and the resulting profile data is presented

via Parascope as a bar graph.

The Experiment Description may look as follows:

/* Coment:
This experiment executes the workload fault-free for 3 minutes
and presents the workload client profile in the form of a bar graph
*/

PBEGIN
experiment_start (FFEXPl, MatMult, MatData)
workload start (starter, lot, "", PNode4)
wait(180sec, PNOTHE)
workload kill()
data collect()
dataanalyze (profile)
data_present (profile, bargraph)
experimentend()
PEND

The parameters have the following meanings;

" FFEXP1
- the Experiment ID is Fault Free Experiment #1.

" MatMult
- utilize the workload definition for the Matrix Multiply workload

" MatData
- use the input data file for the workload.

" starter
- the SAPC for the workload is starter.

- the command line parameters argc, argv are null.

" PNode4
- the PNode where the SAPC is located.

" 180sec
- run the workload for three minutes.

" PNOTME
- no sensors are used for duration control.

profile
- generate the workload profile.

" profile,bargraph
- display the workload profile using a bargraph format.

Note: the functionality of these commands is described below as part of the Experiment Execution

description. The parameter descriptions above illustrate the context of the experiment.

When the User has completed the Experiment Description, Paradise can perform a

syntax/semantic check and then store the Experiment Description. As part of- these operations,

Paradise updates the administrative status information for the experiment.

84

Sometime before the actual execution of the experiment, the User directs Paradise to compile the

Experiment Description and generate an Experiment Script. The Script is simply an ordered set of

system level commands that implement the required operations and invocations necessary to

perform the actual experiment. The Paradise system automatically produces the required type and

number of commands. As part of this process Paradise inserts the necessary parameters, such as

PNodes, addresses, flags, etc. If desired, the User can inspect the Script to verify that the

Experiment Description was properly specified originally. Paradise stores the Script, and the User

can retrieve or use it at any time.

Note: the exact format of these commands is beyond the current scope of this report. The nature

and characteristics of these Script commands can be inferred from the description of experiment

execution below.

111.3.4. Experiment Execution
At this point the actual execution of the experiment ensues. The User selects the Experiment

Execution menu and specifies the Experiment Script. The Runtime Experiment Controller (REC)

interprets the Experiment Script and performs the specified operations to implement the

experiment. The salient operations, as specified in the Experiment Description of Section 111.3.3, are

as follows:

" The following operations are performed as a result of the experimentstart0
command:

- The experiment id FFEXP1 is established as the reference label for Paradise.
The resultant data of the experiment is now tagged with this identifier. This is
the reference for the Integration Platform.

" Paradise accesses the Workload Definition and, using the information therein,
performs the following operations automatically:

" Verify the network configuration

* (Compile modules if required)

" Distribute executable images to proper PNodes for each APC.

" Distribute monitor fault profile (MFP) for each APC.

" Transfer data file to proper PNode

• At this point the workload is ready to be executed

" The following operations are performed as a result of the workloadstart0 command:
* The SAPC is created using argc,argv as the command line variables.

" The SAPC in turn creates the workload entities (APMs, APCs)

• As each APC starts up:

" the corresponding MFP file is read.

" the sensor control blocks are built

" the fault control blocks are built

" the corresponding LRF file is created

85

" At this point, the workload is executing

• As each APC executes, the installed sensors are encountered. Depending upon the
filtering flags, the enabled sensors fire and event records are generated. In this
example only the entry/exit sensors are enabled.

" The following operations are performed as a result of the wait() command:

" The workload continues to execute

" (if any queues fill up, they are flushed to the LRF)

• There is a pause in the REC for 180 seconds

* The following operations are performed as a result of the workload_kill() command:
" (note: Some APC entities may have self terminated or crashed.)

" Commands are issued to each APC to terminate.

" The data queues are flushed to the LRFs.

" The following operations are performed as a result of the data collect() command:

" The LRF in each PNode is transferred to the PWS.

" The data files are organized and tabulated as part of the Paradise administrative
function.

" When required, LRfs from heterogeneous PNodes are converted to the Paradise
canonical data form.

" The following operations are performed as a result of the data analyze0 command:
" Pertinent information is extracted from the collection of data files and entered into

the data base

" A complex query is performed according to the requirements for generating a
workload profile.

" The resulting data is stored in the data base.

• The following operations are performed as a result of the data-present0 command:
* A device which implements the profile graphic presentation is invoked.

" The device accesses the data base and, using the argument bargraph, generates
the window and the display.

• (At this or a later point in time the User can utilize the display menus to vary the

details of the display, e.g. zoom in/out)

" The following operations are performed as a result of the experimentendO command:

* Reboot crashed PNodes.

" Re-initialize the PMC in each PNode.

" Perform associated housekeeping functions.

111.3.5. Data Collection
As the workload executes, event records are deposited in a local APC queue. If there is a queue

overflow, the contents are flushed to the LRF.

During data collection the LRF in each PNode is transferred to the P'WS. The data files are

organized and tabulated as part of the Paradise administrative function. When required, LRFs from

86

heterogeneous PNodes are converted to the Paradise canonical data form so they present a uniform

base of data.

111.3.6. Data Analysis
In this fault free version of the example, the command data_analyze(profile) directs Paradise to

apply the required tools to analyze the data and to compile an execution profile of the workload. The

start and termination times of all APCs are listed.

111.3.7. Data Presentation
In this fault free version of the example, the command data-present(profile, bargraph) directs

Paradise to apply the required tools to analyze the data and to create a graphical view of the

execution profile of the workload. The start and termination times of all APCs are indicated.

III.4. Fault Injection Experimentation
The purpose of this example section is to illustrate the Paradise methodology for preparing an

experiment which includes fault injection.

The primary difference between the preparation of a fault free experiment (FFE) and a fault

injected experiment (FIE) is found in the MFP used by the APCs in the workload. There are two

such significant differences in the MFP: (See Section 2.2.2)

" fault profile entries are included

" sensor/fault links are established

Recall that fault injection is triggered by a sensor firing. (See Section 2.3.2) This statement

presumes the following:

" the APC control flow induces the sensor to fire

* the sensor is enabled

" a fault is specified in the fault profile

" the sensor is linked ' a fault

The fundamental ste', then is to generate the faults which constitute the fault profile and to

establish the link to the sensor which is supposed to trigger the fault. Note that this is done for each

APC that is to be fault injected. The two required steps are referred to as:

* Fault List creation

" Fault Installation

The primary fact to keep in mind is that fault injection experiments proceed exactly as the fault free

type except for the additional steps of generating and installing the faults. In fact, experience has

shown that this is the usual manner is which Users proceed in the development of an experiment.

Also keep in mind that these two steps are performed separately.

87

111.4.1. Workload Preparation
The workload has been prepared in the fault free phase, and it can be used without change in this

fault injection experiment. All of the required code, sensor profiles, element profiles and MFP files

are maintained by the Paradise Librarian.

1.4.2. Fault Preparation
The purpose of Fault Preparation is to specify the manner in which faults are to be inserted into a

workload during an experiment. Paradise provides a set of tools/facilities with which the User can

characterize the faults.

111.4.2.1. Fault Generation Tools
The facilities for generating faults consist of:

" Fault Class Definitions (FCD)

* Domains

" Methods

These are discussed in Section 5.1.2.

Recall that a fault instance can be viewed as an ordered set of specifiers such as: which APC,
which element, which sensor, which mask, and so on. A domain can be considered simply as a set of

alternatives for for each specifier. A method can be considered as a selection function over a domain.
The method reflects the characteristic of the type of faults that the User wishes to generate.

As discussed in the report, the domains and methods are maintained by the Fault Librarian.

In general, domains are workload specific since they reflect the workload virtual address. On the
other hand, methods are not workload specific but rather general in nature. In the Paradise system
the Users can develop their own methods if so deemed necessary; these are also maintained by the

Fault Librarian.

The Fault Class Definition provides a high-lcvel capability by which the User can specify and
associate domains and methods that produce the esired faults. Paradise uses the FCD
specifications to proceed through the complex -rocess of accessing and selecting the necessary
information from the IP in order to produce faults and then integrate them into MFPs of the APCs to

be fault injected.

As an example, consider a simple form of experiment fault injection. The following factors

characterize the general nature of fault injection.

• Select a set of APC's to be faulted. This set can be all, some, or one of the existing APCs.
This set is the domain of possible APCs that may be fault injected. Determine the
method of APC selection from the domain of possibilities.

* Determine where in the APC address space the fault is to be inserted (i.e. corrupt a
memory segment of one or more bytes). Determine the how this location is selected.

88

" Determine when the fault is to be injected. This implies that a sensor(s) be selected
since Paradise fault injection is sensor-based.

" Determine the nature of the fault, namely length, mask, etc.

111.4.2.2. Creation of Fault Class Definitions
Now look at these steps in more detail: It is assumed that Paradise maintains a list of the APCs

in each workload, this list may be referred to as the WLProfile. This list can be used to constitute a

domain.

Consider the case in which the User has no specific APC in mind to fault inject, so defers the

decision to Paradise. This is done by associating the method randomO with the domain wlAPClist.

Note that the particular workload is known in the current Paradise environment, so the correct

wlAPClist is implicitly defined.

Similarly, the User has no specific location with the APC address space in mind, so defers the the

decision to Paradise again. This is done by associating the method random with the Element Profile

of the selected APC.

Since elements have a certain size, the displacement into the element address space can also be

randomly chosen. Of course the maximum displacement depends upon the element size, so Paradise

provides the required information

Note that the same randomO method is used above; methods are generalized over the set of

possible domains.

Now assume that the User wishes to zero four bytes of the APC address space starting at the

virtual address generated by the above steps. The method zeromaskO generates a four byte mask.

The null domain is specified since the method performs no selection function. in this case. The

method maskinsert(move) stipulates that the mask generated is used to directly replace the memory

contents.

Lastly, the User wants the fault injection to occur when the AP(executes the P_APCSTART

sensor after program execution begins. The FC may look as follows:

89

/* Comment:

This FCD selects a single address space location in a workload
and sets four (4) bytes to zero.

Domain Method*/

WL Profile random()
elem profile random ()
sizeyprofile random ()
null mask insert (move)
null zeromask(4 bytes)
sensprofile specific (PAPCSTART)

111.4.2.3. Generation of Fault lists
Using Paradise, the User can specify the number of faults to generate given the Fault Class

Definition. When they are generated, Paradise places them into respective Fault Lists according to

APCs.

The simplest case consists of single workload fault. The User selects the above FCD and specifies

that one (1) fault instance is to be generated. The generated fault may look as follows:

multme3 j 0 move \00\00\00\00 PAPCSTART

The interpretation of the fault is: fault inject APC multme, at the location of element j at a

displacement of 0 bytes. Replace the contents of these four bytes with zero. Perform the fault

injection when the P_LOOPTOP sensor fires.

At this point Paradise creates a fault profile for the APC multme3 and the fault instance is

entered. Subsequently this fault profile will be joined to the sensor profile of the same APC during

the generation of the Monitor Fault Profile.

Please keep in mind that the simple example above in no way represents the total scope of fault

generation. The number of combinations and variations of Fault Class Definitions, methods,

domains (and User intervention) is practically limitless. When the number of faults to be generated

is more than one, Paradise creates the required fault profiles and stores the Fatilt instances in the

appropriate ones.

Note the capability that Paradise provides. By simply creating the FCD above, the User directs

the Paradise system to perform a complex assortment of operations with a diverse set of information.

Since Paradise administers/manages all of the above entities, the procedure is performed totally

autoInatically.

Also note that Paradise provides for direct User intervention. The single fault instance above

could have been generated directly by the User, and then directed to a Fault List. As Users gain

familiarity with Paradise, they will develop the facility to direct and manipulate the system tools in

90

very specific ways.

111.4.2.4. MFP Generation and Fault Installation

In the last step of application development, the information from the fault list and the sensor
profile are combined to obtain the Monitor Fault Profile. This process includes the following steps:

e insert the fault list into the fault profile segment of the MFP (i.e after the "'@" marker).

e find the triggering sensor in the sensor profile segment of the MFP.

* enable the sensor if is not already so.

* insert the fault index into the sensor definition.
(This links the sensor to the fault).

At this point, the only remaining step is for the User to specify the sensors to be enabled in order

to make the instrumentation visible. This is done interactively using the Paradise graphic interface.
The User displays the Paradise "roadmap" and selects the desired sensors either by type or

individually using the mouse pointer. The sensors enabled in the fault free case (#1, #18) are to be

utilized again since the objective is to observe any variations in the workload profile. Since it is

specified in the fault instance to perform fault injection at the beginning of the multiplication for-

loop, Paradise enables the PLOOPTOP sensor (#2) enables and a link is established to the fault

instance. (Note: the fault instance doesn't include the multme3 field because it is now located in the

MFP file for that APC. The PLOOPTOP field is not included also since the link to that sensor is
already established. There is one fault (i.e. Fit = 1) associated with sensor #2 which is specified by
the fault index 1 (i.e. Ind = 1).

Line IEnable Status Pro Act Epi Sub Fit Ind
1 I 1 31 0 1 0 0 0
2 I 1 31 0 0 0 0 1 1
3 1 0 31 0 0 0 0 0
4 1 0 31 0 0 0 0 0
5 1 0 31 0 0 0 0 0
6 1 0 31 0 0 0 0 0
7 1 0 31 0 0 0 0 0
8 1 0 31 0 0 0 0 0
9 1 0 31 0 0 0 0 0

10 10 31 0 0 0 0 0
11 1 0 31 0 0 0 0 .0
12 1 0 31 0 0 0 0 0
13 I 0 31 0 0 0 0 0
14 1 0 31 0 0 0 0 0
15 1 0 31 0 0 0 0 0
16 1 0 31 0 0 0 0 0
17 I 0 31 0 0 0 0 0
18 1 1 31 0 1 0 0 0

j1 I j) 0 move \00\00\00\00

91

111.4.3. Experiment Description
With respect to the fault free version of the experiment, the new Experiment Definition may be

exactly the same except for an altered Experiment ID parameter. An additional command has been

included which determines the fault latency time for the workload.

/* Coment
This experiment executes the workload fault-free for 3 minutes
and presents the client scheduling in the form of a bar graph*/

PBEGIN
experimentstart (FI_ExPI, Matult, MatData)
workload start (starter, "", "", PNode4)
wait(180sec, PNOTME)
workloadkill()
dataanalyze (profile)
dataanalyze (faultlatency)
data_present (profile, bargraph)
experiment end ().
PEND

The parameters now have the following meanings;

* FIEXP1
- the Experiment ID is Fault Injection Experiment #1.

(It was FFEXP1, i.e. Fault Free Experiment #1.)

9 MatMult
- (unchanged) - utilize the workload definition for the Matrix Multiply workload.

* MatData
- (unchanged) - use the input data file for the workload.

e starter
- (unchanged) - the SAPC for the workload is starter.

0

- (unchanged) - the command line parameters argc, argv are null.

" PNode4
- (unchanged) - the PNode where the SAPC is located.

" 180sec
- (unchanged) - run the workload for three minutes.

" P_NOTME
- (unchanged) - no sensors are used for duration control.

" profile
- (unchanged) - generate the workload profile (timeline)

" fault_latency
- determine when/where fault was detected

" profile,bargraph
- (unchanged) - display the workload profile using . bargraph format.

92

111.4.4. Experiment Execution

The experiment is executed in the same manner as the fault free case. The primary difference is

that the selected APC will fault inject at startup time when the APC_LOOPTOP sensor is executed.

Now that the APC address space has been corrupted, the following situations may arise:

" nothing
- the corruption caused no change in the APC execution.

• degradation
- the corruption causes a response change, but no error is detected.

" error
- the APC execution is altered in some way, and an error is detected.

" crash
- the APC is killed because of some illegal operation.

Because of the APC error, the following situations may arise in the workload:

" lost message
- a message was not sent/received.

" time shift message
- a message was sent early/late.

" corrupted message
- a message content was altered.

The reason for describing the execution in this manner is to illustrate that fault injection may

cause network wide repercussions. With this in mind the User should take steps to properly

instrument the workload so as to make these ramifications visible (observable). When done in this

manner Paradise can then reconstruct the network wide phenomenon and present it to the User in

the form of data and/or graphical representations by means of Parascope.

111.4.5. Data Collection

Data Collection proceeds in the same manner described in the Fault Free case.

MX.4.6. Data Analysis

Data Analysis proceeds in the same manner described in the Fault Free case.

In this fault injection case, the User may wish to query some additional information concerning

the behavior of the workload as influenced by the fault.

Some of the information that can be provided by the Paradise data analysis tools is:

" List the APCs that failed.

" List the PNodes that crashed.

* List the timelines that were altered.

" List the event records associated with Error Detection mechanisms in the workload.

" List the event records associated with Error Recovery mechanisms in the workload.

93

" How was the corrupted memory changed? Was a data word altered? Was an instruction
word changed?

" If the fault was detected, what was the latency time? Where was the fault detected?

The last situation is specified in the Experiment Description. The command

data_analyze(faultjlatency) specifies that that the appropriate tool(s) be applied to the data such

that the desired information is extracted.

111.4.7. Data Presentation
Data Presentation proceeds in the same manner described in the Fault Free case. The workload

profile is displayed in bargraph form.

In this fault injection case, the profile display can provide additional types of visual information,

such as:

" Highlight the time and location of the fault injection.

" Highlight the APC where the fault is detected

" Highlight failed APCs and PNodes

the User may wish to query some additional information concerning the behavior of the workload

as influenced by the fault.

94

Appendix IV
The Attachments

IV.1. APC Monitoring Attachment

The following code is the MA that was used for APCs. The DCA that was used is shown in a

following section.

Ret Info Buffer[30], *RetBuffer[30];
int Buffer count = 0;

P SENSORFLUSH ()
{

if (Buffercount != 0)
pslcollgenSENSOR (NULL, RetBuffer, Buffer-count);

I

Send buff off ()
{

pslcollgenSENSOR (NULL, RetBuffer, Qsize);

I

int P SENSOR (sentype, stat_ID)
int sen type, stat_ID;
{

DATE Cur time;
int thesize;

RetBuffer(Buffercount] = &Buffer(Buffercount];
GetDATE (&Curtime);
CopyDATE (&Curtime, &Buffer[Buffercount] .Timestamp);
Buffer(Buffer count] .Sentype = sen type;
Buffer[Buffer_count] .StatID = statID;
if (Buffercount >= (Qsize - 1))
(

Buffer count = 0;
Send-buff off (;

} else
Buffercount++;

IV.2. APC Data Collection Attachment

This section shows the col.typedef and coll.mgr files that were used to build the DCA as a Cronus

manager. This manager is similar to the one described in appendix section 1 except it accepts a list

of sensors (vs. single sensors).

Following is the coll. typedef file:

type Collector = 627
abbrev is coll
subtype of Object;

95

cantype RET INFO
representation is RetInfo-
record

Timestamp: EDATE;
Sentype: U161;
StatID: U161;
Junk: ASC;

end RETINFO;

generic operation SENSOR
(Info: array of RET INFO);

generic operation RETRIEVE ()
returns
(AnEntry: array of RET INFO);

end type Collector;

Following is the col.rmgr file:

manager "The Collector Manager"
abbrev is coll

type coll
variable representation is SEN_ENTRY
coll implements all from coll
obj implements rest

96

Appendix V
List of Abbreviations

Abbrev. Description

APC Application Client: A Cronus client running on a PNODE that is associated
with the execution of a parallel/distributed application. Each APC has four
attachments: WCA, MA, FIA, and DCA.

DCA Data Collection Attachment: A APC attachment that includes commands to
allow retrieval of sensor data from the local file without interrupting the
ongoing monitoring process.

DCC Data Collection Controller: Implements commands to collect information
from or get information on the LRF.

DCM Data Collection Manager: A PEM component that supports event and LRF
abstractions.

EDC Experiment Definition Compiler: Given a high level experiment description,
a fault description, and a workload description, the EDC compiles an
experiment script.

FIA Fault Injeclinn Attachment: Implements mechanisms to perform fault
injection in an APC.

FIC Fault Injection Controller: Communicates with the FIA of an APC to
iy ,mically alter the fault profile characteristics.

FIG Fault Instance Generator: Takes the description of a fault class and produces
a number of fault instances to be applied to a particular workload.

FL{ Fault Injection Manager: A PEM component that deals with fault
abstractions.

IP Integration Platform: A Paradise database that contains the monitor profile,
fault profile, and runtime data of APCs.

LRF Local Repository File: APC sensor events are recorded in this file. There is
one LRF for each Paradise APC in a workload.

MA Monitoring Attachment: An APC attachment that controls the monitoring
,ictivities in Paradise. It detects, filters, and stores information from sensors
in the APC code. Sensor data is stored into a local queue which empties into a
LRF.

MC Monitoring Controller: Implements commands to control the MA of the APC
such as setting queue size, and turning sensors on or off.

MM Monitoring Manager: A PEM component that supports monitoring profile,
sensor, and event abstractions.

PEM Paradise Experiment Manager: A component of the PWS that is associated
with the run-time control of an experiment. The PEM itself consists of four

t components : WM, MM, FIM, and.DCM.

Table V-i: Description of Abbreviations.

97

Abbrev. Description

PMC Paradise Monitor and Controller: A special process on each PNODE that
communicates with APCs on its node and also with the PWS that is in control.

'Has four components: WC, MC, FIC, and DCC;

PNODE Paradise Node: A host that is part of the Paradise system. Each PNODE runs
the Cronus operating system.

POPROC Paradise Postprocessor: Takes code that has been processed by the Cronus
compiler and extracts the fault profile which is then stored in the IP.

PPROC Paradise Preprocessor: Takes User code as input and inserts additional
statements so code can be run as a Paradise APC. Also extracts development
time data and monitor profile and stores in IP.

PWS Paradise Workstation: A PNODE of Paradise that runs a special application
with graphic capabilities that is the User interface. The PWS is in control of
the Paradise system.

REC Runtime Experiment Controller: Takes as input an experiment script that
has been generated by the edc and interprets it.

SAPC Startup Application Client: An API that creates other clients which
constitute a particular workload.

WC Workload Controller: Part of the PMC that implements functions to create
and synchronize APCs in the local PNODE.

WCA Workload Control Attachment: As one of the APC attachments, the WCA
implements a set of functions to create, control and synchronize distributed
workloads.

WM Workload Manager: A component of PEM that communicates with a set of
clients called the workload. Communication is done via a Paradise link.

Table V-1, concluded

98

References

[Gettys 871 Jim Gettys, Ron Newman, Robert W. Scheifler.
xlib - C Language X Interface, Protocol Version 11
Massachusetts Institute of Technology, 1987.

[Schantz 85] Richard E. Schantz, Robert H. Thomas.
CRONUS, A Distributed Operating System: Functional Definition and System

Concept.
Technical Report 5879, BBN Laboratories Incorporated, 1985.

[Schantz 86] R. Schantz, K. Schroder, M. Barrow, G. Bono, M. Dean, R. Gurwitz, K. Lam,
K. Lebowitz, S. Lipson, P. Neves, R. Sands.
CRONUS, A Distributed Operating System: Cronus DOS Implementation, Final

Report.
Technical Report 6183, BBN Laboratories Incorporated, March, 1986.

[Swick 87] Ralph R. Swick, Terry Weissman.
X Toolkit Widgets - C Language XInterface, X Window System
Massachusetts Institute of Technology, 1987.

99

Index
Abbreviations list 96
APC control block 19, 56
APC id 19
APC structure 20
Application clients 2
Attachment control code 8
Attachments 3, 5

Data collection attachment 17, 3
Fault injection attachment 3, 16
Monitoring attachment 3, 11
Workload control attachment 9, 3

Clock drift 57

Data analysis 49
Data collection 2
Data presentation 49
Device 30
Devices 47

Events 29
Experiment Definition 37
Experiment Definition Compiler 46
Experiment Execution 48
Experiment script 30

Fault class 28
Fault Class Generator 44
Fault control block 16
Fault injection 2
Fault injection attachment commands 16
Fault instance 27
Fault instance generator 37
Fault Librarian 43
Fault Library 46
Fault List Generator 45
Fault occurrence 28
Fault profile 10, 28

Instrumentation 12
Integration Platform 37

Link 25
Local monitoring queue 15
Local repository file 29

Matrix multiplication eximple 59
Matrix object manager '15

Memory fault class 28
Monitor control block 12
Monitor profile 10, 26
Monitoring 1
Monitoring attachment conmands 15

P-error 20
Paradise environment 9
Paradise experiment manager 2, 25

Commands 30
Data collection manager 2, 29
Fault injection manager 2, 27
Monitoring manager 2,26
Workload manager 2, 25

Paradise experiment manager abstractions 25
Paradise menu set 38
Paradise monitor and controller 2, 19

Data collection controller 3, 24

100

Fault injection controller 2, 23
Monitoring controller 2, 21
Workload controller 2, 19

Paradise postprocessor 36
Paradise preprocessor 5, 6, 36
Paradise workstation 1
PARASCOPE 52
PNODES 1

Register fault class 28
Runtime experiment controller 37, 48

Sensor call format 53
Sensor control block 12
Sensor data logging techniques 53
Sensor object manager 65
Sensor status word 14
Signals 11
Startup application client 25
System sensors 27

User sensors 26

Workload control 1
Workload controller object manager 66
Workload Librarian 40
Workload Library 43
Workload manager commands 33

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (CV1) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability /maintainability and compatibility.

